首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Understanding the importance of ecological factors in the origin and maintenance of patterns of phenotypic variation among populations, in an explicit geographical context, is one of the main goals of human biology, ecology and evolutionary biology. Here we study the ecological factors responsible for craniofacial variation among human populations from South America. Location South America. Methods We studied a dataset of 718 males from 40 South American populations, coming from groups that inhabited different geographical and ecological regions. Cranial size and shape variation were studied using 30 cranial measurements. We first used spatial correlograms and interpolated maps to address spatial patterns. We then regressed the shape (principal component scores) and size variables against ecology (mean annual temperature and diet) using multiple and multivariate spatial regression. Finally, the expected magnitudes of shape and size divergence under the influence of genetic drift and mutations alone were evaluated using neutral expectation for the divergence rate. Results The spatial correlograms showed a cline affecting the entire South American distribution. Interpolated maps showed that size and allometric shape vary from south‐east to north‐west. Multiple and multivariate regression analyses suggested that diet has the largest and most significant effect on this pattern of size and allometric shape variation. Finally, the results of the divergence rate test suggested that random processes alone cannot account for the morphological divergence exhibited by cranial size and allometric shape scores among southernmost populations. Main conclusions Correlograms, spatial regression and divergence rate analyses showed that although local factors (neutral processes or local environmental conditions) are important to explain spatial interpopulation differentiation in cranial characteristics among these populations, there is significant correlation of cranial size and allometric shape variation with diet. Gene flow among human populations, or local environmental conditions, could explain spatial variation mainly at smaller spatial scales, whereas the large‐scale pattern of the South American dataset is mainly related to the high proportion of carbohydrates and low proportion of proteins consumed.  相似文献   

2.
Ecological factors can be important to shape the patterns of morphological variation among human populations. Particularly, diet plays a fundamental role in craniofacial variation due to both the effect of the nutritional status—mostly dependent on the type and amount of nutrients consumed—on skeletal growth and the localized effects of masticatory forces. We examine these two dimensions of diet and evaluate their influence on morphological diversification of human populations from southern South America during the late Holocene. Cranial morphology was measured as 3D coordinates defining the face, base and vault. Size, form, and shape variables were obtained for 474 adult individuals coming from 12 samples. Diet composition was inferred from carious lesions and δ13C data, whereas bite forces were estimated using traits of main jaw muscles. The spatial structure of the morphological and ecological variables was measured using correlograms. The influence of diet composition and bite force on morphometric variation was estimated by a spatial regression model. Cranial variation and diet composition display a geographical structure, while no geographical pattern was observed in bite forces. Cranial variation in size and form is significantly associated with diet composition, suggesting a strong effect of systemic factors on cranial growth. Conversely, bite forces do not contribute significantly to the pattern of morphological variation among the samples analyzed. Overall, these results show that an association between diet composition and hardness cannot be assumed, and highlight the complex relationship between morphological diversification and diet in human populations. Am J Phys Anthropol 155:114–127, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Evolution is known to act on contemporary timescales and invasive organisms are often used to study rapid evolutionary changes of geno- and phenotypes under natural conditions. The ability and speed of local adaptation is discussed as a key character triggering successful invasions. Variation of body shape among populations of two highly invasive, sympatric Ponto-Caspian goby species (Teleostei: Gobiidae) with a comparable invasion history in the upper Danube River, i.e. Neogobius melanostomus and Ponticola kessleri, was assessed using geometric morphometric methods. Phenotypic variation established within less than 15 generations was evident in both species. It was mainly correlated with geographical location, but in N. melanostomus also with substrate type, an ecological variable reflecting habitat quality. The two species differed in their degree of intraspecific variation which was more pronounced in N. melanostomus, the numerically dominant invader in the upper Danube. Body shape variation significantly correlating with geographical rather than ecological variables suggests a heritable component and renders phenotypic plasticity as a lone explanation unlikely. Patterns of body shape similarity among upper Danubian goby populations suggest a stepping-stone rather than a continuous expansion model for both species, where multiple introductions, possibly from various origins, may have shaped differentiation.  相似文献   

4.
本文采用几何形态测量法对中国大蹄蝠9个不同地理种群头骨形态变化进行研究。结果表明,不同地理种群的头骨大小及形状存在显著差异,其中云南思茅种群与海南陵水种群差异最大。回归分析表明头骨形态的地理变化与气候因素相关。随着年均温度、年均湿度的升高以及年均降水量的增多,大蹄蝠头骨变小,上颌、齿、咬肌附着部分以及耳蜗部分的形状发生变化。此外,头骨大小与海拔高度呈正相关,头骨形状变化与纬度显著相关。本研究表明对栖息地生态条件的适应是中国大蹄蝠头骨形态地理变化的重要原因。  相似文献   

5.
Madec L  Bellido A  Guiller A 《Heredity》2003,91(3):224-231
Anatomical and molecular characters used to differentiate populations of the land snail Cornu aspersum (Helix aspersa) exhibit, in the western Mediterranean, definite and concordant patterns of correlation with geography. Scenarios involving Pliocene geological changes and postglacial expansion during the Pleistocene were proposed in previous studies to account for the establishment of this geographical structure. In the present work, we have performed a spatial analysis of variation in shell morphometrics, after the partitioning of the overall variation into size and shape components by means of a principal component-based approach (Cadima and Jolliffe, 1996). In order to know if the same historical events have also structured shell variation, the analysis includes all the populations from North Africa which were investigated for anatomical and molecular surveys. Contrary to shell size, which shows a significant spatial heterogeneity essentially related to environmental pressures, variation in shell shape components splits the populations according to a geographical pattern reflective of hypotheses suggested for molecular markers and genital anatomy. This implies that the selective forces often invoked to explain spatial changes in shell shape are not the deciding factors in the present case. Moreover, within each of the two geographical clusters defined, Mantel correlograms show that the similarity between populations declines according to an isolation by distance model. Because of the different allometric relationships between shell size and genitalia measurements in Western and Eastern entities of North Africa, mechanical constraints, possibly leading to a precopulatory isolation in the contact zone, are involved.  相似文献   

6.

Background and Aims

Geographical variation in foliar and floral traits and their degree of coupling can provide relevant information on the relative importance of abiotic, biotic and even neutral factors acting at geographical scales as generators of evolutionary novelty. Geographical variation was studied in leaves and flowers of Embothrium coccineum, a species that grows along abrupt environmental gradients and exhibits contrasting pollinator assemblages in the southern Andes.

Methods

Five foliar and eight floral morphological characters were considered from 32 populations, and their patterns of variation and covariation were analysed within and among populations, together with their relationship with environmental variables, using both univariate and multivariate methods. The relationships between foliar and floral morphological variation and geographical distance between populations were compared with Mantel permutation tests.

Key Results

Leaf and flower traits were clearly uncoupled within populations and weakly associated among populations. Whereas geographical variation in foliar traits was mostly related to differences in precipitation associated with geographical longitude, variation in floral traits was not.

Conclusions

These patterns suggest that leaves and flowers responded to different evolutionary forces, environmental (i.e. rainfall) in the case of leaves, and biotic (i.e. pollinators) or genetic drift in the case of flowers. This study supports the view that character divergence at a geographical scale can be moulded by different factors acting in an independent fashion.Key words: Embothrium coccineum, Proteaceae, geographical variation, foliar morphology, floral morphology, uncoupling, selective forces, environmental conditions, pollinators, south Andes  相似文献   

7.
Performance‐related variation in fitness can manifest as morphological responses to ecological and evolutionary pressures. Eco‐morphological studies often utilize stark binary comparisons, such as lentic to lotic populations of freshwater fishes, to characterize relationships between form and function despite possible complications from confounding factors. In the present study, we compared body shape variation among lotic populations of a stream fish (Cyprinella venusta Girard) to disentangle the influence of ecological and evolutionary drivers of phenotypic change. We assessed the extent to which body shape corresponded to three key environmental factors (mean channel velocity, mean discharge, and mean annual run‐off), phylogeny (mitochondrial DNA divergence), and body size (centroid size). We also examined relationships between these parameters and a fineness index, which is a measure of streamlining and morphological optimization for steady swimming performance. All three environmental variables had some explanatory power, although morphological characteristics were predominantly associated with variation in mean annual run‐off. Phylogeny was also a strong predictor of morphological variation, whereas body size had little predictive power. Populations experiencing higher mean annual run‐off exhibited a shorter base of the dorsal fin, a more slender body and caudal peduncle, a smaller head in both horizontal and vertical dimensions, and a more anterior placement of the eye. With some exceptions, such as variation in jaw length, differences in body shape associated with phylogenetic history were similar to those associated with run‐off. Notably, all clades exhibited parallel responses to variation in run‐off. Populations experiencing high mean annual run‐off approached a hydrodynamic optimum, suggesting a morphology optimized for steady swimming performance. In contrast to previous studies that emphasize the importance of average water velocity, the findings of the present study indicate that morphological variation among populations of stream fishes is tightly linked to more complex aspects of hydrology and evolutionary history. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, ●● , ●●–●●.  相似文献   

8.
《HOMO》2014,65(2):101-114
Previous studies have shown that ecological factors had a significant role in shaping the patterns of craniofacial variation among South American populations. Here, we evaluate whether temperature and diet contributed to facial diversification in small geographic areas. Facial size and shape of 9 osteological samples from central Patagonia (Argentina) were described using 2D landmarks and semilandmarks. Data on mean annual temperature, diet composition (δ13C and δ15N values) and femoral head maximum breadth, used as a proxy of body mass, were obtained for each sample. We then tested the association of body mass and the ecological variables with facial morphology using spatial regression techniques and a model selection approach. Akaike Information Criterion produced disparate results for both components of facial morphology. The best model for facial size included temperature and body mass proxy, and accounted for more than 80% of variation in size. Lower temperatures were related to larger facial sizes. Body mass was negatively associated with facial size and showed no relationship with the temperature. This suggests a relatively independent variation of cranial traits and body mass at the spatial scale studied here. Facial shape was not associated with the temperature or diet composition, contrasting with the patterns observed at larger spatial scales. Our results point out that the effect of climatic variables on cranial traits might be a source of morphological differentiation not only at large scales but also in small geographic areas, and that size and shape display a differential preservation of environmental signals.  相似文献   

9.
Ecologists and evolutionary biologists have a long‐standing interest in the patterns and causes of geographical variation in animals’ acoustic signals. Nonetheless, the processes driving acoustic divergence are still poorly understood. Here, we studied the geographical variation in echolocation vocalizations (commonly referred to as echolocation ‘pulses’ given their short duration and relatively stereotypic nature, and to contrast them from the communicative vocalizations or ‘calls’) of a widespread bat species Hipposideros armiger in south China, and assessed whether the acoustic divergence was driven by either ecological selection, or cultural or genetic drift. Our results revealed that the peak frequency of echolocation pulses varied significantly across populations sampled, with the maximum variation of about 6 kHz. The peak frequency clustered into three groups: eastern and western China, Hainan and southern Yunnan. The population differences in echolocation pulses were not significantly related to the variation in climatic (mean annual temperature, mean annual relative humidity, and mean annual precipitable water) or genetic (genetic distance) factors, but significantly related to morphological (forearm length) variation which was correlated with mean annual temperature. Moreover, the acoustic differences were significantly correlated with geographical and latitudinal distance after controlling for ‘morphological distance’. Thus, neither direct ecological selection nor genetic drift contributed to the acoustic divergence observed in H. armiger. Instead, we propose that the action of both indirect ecological selection (i.e. selection on body size) as well as cultural drift promote, in part, divergence in echolocation vocalizations of individuals within geographically distributed populations.  相似文献   

10.
Temporal bone shape has been shown to reflect molecular phylogenetic relationships among hominoids and offers significant morphological detail for distinguishing taxa. Although it is generally accepted that temporal bone shape, like other aspects of morphology, has an underlying genetic component, the relative influence of genetic and environmental factors is unclear. To determine the impact of genetic differentiation and environmental variation on temporal bone morphology, we used three-dimensional geometric morphometric techniques to evaluate temporal bone variation in 11 modern human populations. Population differences were investigated by discriminant function analysis, and the strength of the relationships between morphology, neutral molecular distance, geographic distribution, and environmental variables were assessed by matrix correlation comparisons. Significant differences were found in temporal bone shape among all populations, and classification rates using cross-validation were relatively high. Comparisons of morphological distances to molecular distances based on short tandem repeats (STRs) revealed a significant correlation between temporal bone shape and neutral molecular distance among Old World populations, but not when Native Americans were included. Further analyses suggested a similar pattern for morphological variation and geographic distribution. No significant correlations were found between temporal bone shape and environmental variables: temperature, annual rainfall, latitude, or altitude. Significant correlations were found between temporal bone size and both temperature and latitude, presumably reflecting Bergmann's rule. Thus, temporal bone morphology appears to partially follow an isolation by distance model of evolution among human populations, although levels of correlation show that a substantial component of variation is unexplained by factors considered here.  相似文献   

11.
Body size is one of the most influential traits affecting many ecological and physiological processes across animal and plant taxa. Studies of the environmental factors shaping body size patterns may evaluate either temporal or spatial dimensions. Here, we analyzed body size evolution in the radiation of Anolis lizards across both geographical and temporal dimensions. We used a set of macroecological and macroevolutionary methods to test current and past environmental effects on geographical gradients of body size and its evolutionary rates. First, we test whether a set of current ecological/physiological hypotheses (heat balance, productivity and seasonality) explains spatial body size gradients. Second, we evaluate how tempo (i.e. evolutionary rates) and mode (i.e. evolutionary process) of body size evolution changed through time and the role of paleo-temperatures on rates of body size evolution during the Cenozoic. We did not find a signature of current environmental variables driving spatial body size gradients. By contrast, we found strong support for a correlation between temperature changes (i.e. climate cooling) during the Cenozoic and rates of body size evolution (i.e. body size diversification). We suggest that patterns of body size evolution in Anolis lizards might be influenced by thermoregulatory behavior across clades and regions.  相似文献   

12.
Genome size changes significantly among taxonomic levels, and this variation is often related to the patterns shaped by the phylogeny, life histories and ecological factors. However, there are mixed evidences on the main factors affecting molecular evolution in animals.In this study, we used phylogenetic comparative analysis to investigate the evolutionary rate of genome size and the relationships between genome size and life histories(i.e.,hatchling mass, clutch size, clutches per year, age at sexual maturity, lifespan and body mass) among 199 squamata species. Our results showed that the evolutionary rate of genome size in Lacertilia was significantly faster than Serpentes. Moreover, we also found that larger species showed larger hatchling mass, more clutches per year and clutch size and longer lifespan. However, genome size was negatively associated with clutch size and clutches per year, but not associated with body mass we looked at.The findings suggest that larger species do not possess the evolution of large genomes in squamata.  相似文献   

13.
Inter and intra-population variation in morphological traits, such as body size and shape, provides important insights into the ecological importance of individual natural populations. The radiation of Diaptomid species (~400 species) has apparently produced little morphological differentiation other than those in secondary sexual characteristics, suggesting sexual, rather than ecological, selection has driven speciation. This evolutionary history suggests that species, and conspecific populations, would be ecologically redundant but recent work found contrasting ecosystem effects among both species and populations. This study provides the first quantification of shape variation among species, populations, and/or sexes (beyond taxonomic illustrations and body size measurements) to gain insight into the ecological differentiation of Diaptomids. Here we quantify the shape of five Diaptomid species (family Diaptomidae) from four populations each, using morphometric landmarks on the prosome, urosome, and antennae. We partition morphological variation among species, populations, and sexes, and test for phenotype-by-environment correlations to reveal possible functional consequences of shape variation. We found that intraspecific variation was 18-35% as large as interspecific variation across all measured traits. Interspecific variation in body size and relative antennae length, the two traits showing significant sexual dimorphism, were correlated with lake size and geographic location suggesting some niche differentiation between species. Observed relationships between intraspecific morphological variation and the environment suggest that divergent selection in contrasting lakes might contribute to shape differences among local populations, but confirming this requires further analyses. Our results show that although Diaptomid species differ in their reproductive traits, they also differ in other morphological traits that might indicate ecological differences among species and populations.  相似文献   

14.
15.
Disentangling evolutionary forces that may interact to determine the patterns of genetic differentiation within and among wild populations is a major challenge in evolutionary biology. The objective of this study was to assess the genetic structure and the potential influence of several ecological variables on the extent of genetic differentiation at multiple spatial scales in a widely distributed species, the Atlantic salmon, Salmo salar . A total of 2775 anadromous fish were sampled from 51 rivers along the North American Atlantic coast and were genotyped using 13 microsatellites. A Bayesian analysis clustered these populations into seven genetically and geographically distinct groups, characterized by different environmental and ecological factors, mainly temperature. These groups were also characterized by different extent of genetic differentiation among populations. Dispersal was relatively high and of the same magnitude within compared to among regional groups, which contrasted with the maintenance of a regional genetic structure. However, genetic differentiation was lower among populations exchanging similar rates of local as opposed to inter-regional migrants, over the same geographical scale. This raised the hypothesis that gene flow could be constrained by local adaptation at the regional scale. Both coastal distance and temperature regime were found to influence the observed genetic structure according to landscape genetic analyses. The influence of other factors such as latitude, river length and altitude, migration tactic, and stocking was not significant at any spatial scale. Overall, these results suggested that the interaction between gene flow and thermal regime adaptation mainly explained the hierarchical genetic structure observed among Atlantic salmon populations.  相似文献   

16.
The diversity of items consumed by modern didelphids, varying from mostly fruits in Caluromys Allen to mostly small vertebrates in Lutreolina O. Thomas, may cause changes in molar size and shape. We evaluated the morphometric variation of the first and third upper and lower molars of 16 genera of didelphid marsupials, with the aim of assessing the relationship between molar shape change, diet and phylogeny. We used a geometric morphometric approach to analyse how shape changes with diet. We mapped shape onto the phylogeny of the group to reconstruct ancestral states and analyse the evolution of molar shape. Finally, we statistically estimated the effect of size, diet and phylogeny on molar shape. All the analyses indicated little correlation between diet and molar shape and a strong correlation between the position of each genus on the phylogeny and molar shape. We believe that the wide ecological niche used by most of the groups (at least regarding diet) makes the evolutionary changes not strong enough to override pre‐existing differences that occur among clades, and the absence of highly diet‐specialized species (e.g. hypercarnivory or obligate folivory) causes the need for retaining a molar shape that can be useful to process different kinds of food items. © 2014 The Linnean Society of London  相似文献   

17.
Genetic mating systems are expected to vary among and within populations in response to environmental and demographic factors. Despite the fact that mating system variation theoretically can have profound effects on important evolutionary processes such as sexual selection, extensive intraspecific surveys of geographical variation in mating systems are rare. We used microsatellite markers to characterize genetic mating systems of dusky pipefish, Syngnathus floridae , from five populations distributed from the mid-Atlantic Coast to the Western Gulf of Mexico. We also measured a number of environmental and demographic variables to examine correlations between the ecological setting and mating behaviour. Our results show that dusky pipefish are polygynandrous throughout their USA distribution, but they exhibit a wide range of quantitative variation in male mating behaviour. In addition, these five populations varied substantially with respect to environmental and demographic variables, and some of these were significantly correlated with aspects of the genetic mating system. While causal relationships cannot be firmly diagnosed from this type of comparative study, our results do identify several ecological factors, such as water temperature, adult sex ratio, and seagrass biomass, which should be considered in future experimental and comparative work. Overall, this study confirms the expectation that geographical variation in mating systems is widespread and shows that the dusky pipefish is an excellent model for continued research into the factors affecting mating systems in nature.  相似文献   

18.
We compared the dental assemblage of the Rh?ne Valley corridor (RVC) with that of European Neandertals dating to MOIS 7-4 using two linear measurements and three indices. To test if the RVC population was significantly different from Western European Neandertals, we preformed a multi-tiered approached. First, we tested for the normality of the variables using a Shapiro-Wilks test. If the variables were normal, a stepwise Discriminant Function Analysis (DFA) (using Mahalanobis distances) was performed for the normally distributed variables. DFA uses correlation metrics to address weight combinations of variables and emphasizes between group variation while minimizing within group variation. Results show that there is no distinction between the RVC population and other Neandertals except for the Crown Module index of the upper canine. However, the presence of a single significant result does not provide evidence for a local RVC variant within the Neandertal population. These results are supported by evidence from archaeological analysis of this region. We propose that the high genetic control for dental size and shape may account for the reduced ability to distinguish between subpopulation groups based on dental dimensions in groups with small effective size such as the Neandertals.  相似文献   

19.
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability.Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits.Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion.Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.  相似文献   

20.
Aim We tested the hypothesis that the evolutionary fates of two sister groups (Alligatoroidea and Crocodyloidea) are differently constrained by phylogenetic and ecological (functional) factors in the face of climatic change. Location Global. Methods We quantified disparity in skull rostrum shape by means of geometric morphometrics. Mechanical performance of the rostrum was analyzed by applying beam theory calculations to morphological data and experimentally measured bite force. The phylogeny was expressed in the form of principal coordinates, the first ones of which were used as a set of explanatory variables. Extents of species occurrence were computed using species distribution maps. Finally, species maximum skull size were measured and considered as a proxy of maximum body size. We performed variation partitioning analyses in order to compare differential contributions of phylogenetic and ecological factors in Alligatoroidea and Crocodyloidea. Results Alligatoroidea show higher ‘pure’ historical components than Crocodyloidea in explaining both rostrum shape and extent of occurrence (after controlling for body size). On the contrary, geometric variation of skull rostra of Crocodyloidea unequivocally shows a higher ‘pure’ functional component (linked to performance on prey capture) and a higher phylogenetically structured environmental variation than those found in Alligatoroidea. Results obtained for body size variation are consistent with these patterns. In Alligatoroidea, body size variation contains a higher phylogenetic signal than in Crocodyloidea. Main Conclusions Our results suggest that Crocodyloidea and Alligatoroidea may react differently when faced with significant environmental changes. We predict that global climatic changes will have a more important effect on Crocodyloidea than in Alligatoroidea by (1) promoting trait shift, adaptation to the new diet and speciation and (2) modifying the geographical range distribution of species (which may track favourable ecological conditions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号