首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abasic (AP) lesions are the most frequent type of damages occurring in cellular DNA. Here we describe the conformational effects of AP sites substituted for 2′-deoxyadenosine in the first (ap7), second (ap13) or third (ap19) loop of the quadruplex formed in K+ by the human telomere DNA 5′-d[AG3(TTAG3)3]. CD spectra and electrophoresis reveal that the presence of AP sites does not hinder the formation of intramolecular quadruplexes. NMR spectra show that the structural heterogeneity is substantially reduced in ap7 and ap19 as compared to that in the wild-type. These two (ap7 and ap19) sequences are shown to adopt the hybrid-1 and hybrid-2 quadruplex topology, respectively, with AP site located in a propeller-like loop. All three studied sequences transform easily into parallel quadruplex in dehydrating ethanol solution. Thus, the AP site in any loop region facilitates the formation of the propeller loop. Substitution of all adenines by AP sites stabilizes the parallel quadruplex even in the absence of ethanol. Whereas guanines are the major determinants of quadruplex stability, the presence or absence of loop adenines substantially influences quadruplex folding. The naturally occurring adenine-lacking sites in the human telomere DNA can change the quadruplex topology in vivo with potentially vital biological consequences.  相似文献   

2.
8-Oxoguanine is a ubiquitous oxidative base lesion. We report here on the effect of this lesion on the structure and stability of quadruplexes formed by the human telomeric DNA sequence 5'-dG(3)(TTAG(3))(3) in NaCl and KCl. CD, PAGE and absorption-based thermodynamic stability data showed that replacement of any of the tetrad-forming guanines by 8-oxoguanine did not hinder the formation of monomolecular, antiparallel quadruplexes in NaCl. The modified quadruplexes were, however, destabilized in both salts, the extent of this depending on the position of the lesion. These results and the results of previous studies on guanine-to-adenine exchanges and guanine abasic lesions in the same quadruplex show a noticeable trend: it is not the type of the lesion but the position of the modification that determines the effect on the conformation and stability of the quadruplex. The type of lesion only governs the extent of changes, such as of destabilization. Most sensitive sites were found in the middle tetrad of the three-tetrad quadruplex, and the smallest alterations were observed if guanines of the terminal tetrad with the diagonal TTA loop were substituted, although even these substitutions brought about unfavorable enthalpic changes. Interestingly, the majority of these base-modified quadruplexes did not adopt the rearranged folding induced in the unmodified dG(3)(TTAG(3))(3) by potassium ions, an observation that could imply biological relevance of the results.  相似文献   

3.

Background

The abasic sites represent one of the most frequent lesions of DNA and most of the events able to generate such modifications involve guanine bases. G-rich sequences are able to form quadruplex structures that have been proved to be involved in several important biological processes.

Methods

In this paper, we report investigations, based on calorimetric, UV, CD and electrophoretic techniques, on 12 oligodeoxynucleotides analogues of the quadruplex forming human telomere sequence d[TA(G3T2A)3G3], in which each guanine has been replaced, one at a time, by an abasic site mimic.

Results

Although all data show that the modified sequences preserve their ability to form quadruplex structures, the thermodynamic parameters clearly indicate that the presence of an abasic site decreases their thermal stability compared to the parent unmodified sequence, particularly if the replacement concerns one of the guanosines involved in the formation of the central G-tetrad.

Conclusions

The collected data indicate that the effects of the presence of abasic site lesions in telomeric quadruplex structures are site-specific. The most dramatic consequences come out when this lesion involves a guanosine in the centre of a G-run.

General significance

Abasic sites, by facilitating the G-quadruplex disruption, could favour the formation of the telomerase primer. Furthermore they could have implications in the pharmacological approach targeting telomere.  相似文献   

4.
Parallel tetramolecular quadruplexes may be formed with short oligodeoxynucleotides bearing a block of three or more guanines. We analyze the properties of sequence variants of parallel quadruplexes in which each guanine of the central block was systematically substituted with a different base. Twelve types of substitutions were assessed in more than 100 different sequences. We conducted a comparative kinetic analysis of all tetramers. Electrospray mass spectrometry was used to count the number of inner cations, which is an indicator of the number of effective tetrads. In general, the presence of a single substitution has a strong deleterious impact on quadruplex stability, resulting in reduced quadruplex lifetime/thermal stability and in decreased association rate constants. We demonstrate extremely large differences in the association rate constants of these quadruplexes depending on modification position and type. These results demonstrate that most guanine substitutions are deleterious to tetramolecular quadruplex structure. Despite the presence of well-defined non-guanine base quartets in a number of NMR and X-ray structures, our data suggest that most non-guanine quartets do not participate favorably in structural stability, and that these quartets are formed only by virtue of the docking platform provided by neighboring G-quartets. Two notable exceptions were found with 8-bromo-guanine (X) and 6-methyl-isoxanthopterin (P) substitutions, which accelerate quadruplex formation by a factor of 10 when present at the 5' end. The thermodynamic and kinetic data compiled here are highly valuable for the design of DNA quadruplex assemblies with tunable association/dissociation properties.  相似文献   

5.
Repetitive 5'GGXGG DNA segments abound in, or near, regulatory regions of the genome and may form unusual structures called G-quadruplexes. Using NMR spectroscopy, we demonstrate that a family of 5'GCGGXGGY sequences adopts a folding topology containing double-chain reversals. The topology is composed of two bistranded quadruplex monomeric units linked by formation of G:C:G:C tetrads. We provide a complete thermodynamic and kinetic analysis of 13 different sequences using absorbance spectroscopy and DSC, and compare their kinetics with a canonical tetrameric parallel-stranded quadruplex formed by TG4T. We demonstrate large differences (up to 10(5)-fold) in the association constants of these quadruplexes depending on primary sequence; the fastest samples exhibiting association rate equal or higher than the canonical TG4T quadruplex. In contrast, all sequences studied here unfold at a lower temperature than this quadruplex. Some sequences have thermodynamic stability comparable to the canonical TG4T tetramolecular quadruplex, but with faster association and dissociation. Sequence effects on the dissociation processes are discussed in light of structural data.  相似文献   

6.
Insight into the influence of inversion of polarity sites on the structural features of quadruplex structures is presented. The NMR and CD studies concern modified oligodeoxynucleotides (ODNs) based on the quadruplex forming sequence TGGGT. The presence of inversion of polarity sites not only does not compromise the formation of quadruplexes, but in some cases it increases the thermal stability of modified complexes compared with that of the unmodified one.  相似文献   

7.
Kinetics of tetramolecular quadruplexes   总被引:8,自引:6,他引:2  
The melting of tetramolecular DNA or RNA quadruplexes is kinetically irreversible. However, rather than being a hindrance, this kinetic inertia allows us to study association and dissociation processes independently. From a kinetic point of view, the association reaction is fourth order in monomer and the dissociation first order in quadruplex. The association rate constant kon, expressed in M−3·s−1 decreases with increasing temperature, reflecting a negative activation energy (Eon) for the sequences presented here. Association is favored by an increase in monocation concentration. The first-order dissociation process is temperature dependent, with a very positive activation energy Eoff, but nearly ionic strength independent. General rules may be drawn up for various DNA and RNA sequence motifs, involving 3–6 consecutive guanines and 0–5 protruding bases. RNA quadruplexes are more stable than their DNA counterparts as a result of both faster association and slower dissociation. In most cases, no dissociation is found for G-tracts of 5 guanines or more in sodium, 4 guanines or more in potassium. The data collected here allow us to predict the amount of time required for 50% (or 90%) quadruplex formation as a function of strand sequence and concentration, temperature and ionic strength.  相似文献   

8.
CD and NMR studies on heterochiral oligodeoxynucleotides (d/l-ODNs) forming quadruplex structures are reported. Heterochiral ODNs, based on sequence TGGGGT, are able to form stable either right- or left-handed quadruplexes depending on d/l ratio and residues position. Results suggest that the 3′-end and the core of the G-run are more important than the 5′-end in determining the quadruplex handness. Particularly, oligonucleotide TDGDGLGLGDTD (L34) at low temperatures forms a well-defined left-handed quadruplex, notwithstanding it is mostly composed by natural d residues. This structure is characterized by three all-anti G-tetrads and one all-syn G-tetrad.  相似文献   

9.
Tetramolecular G-quadruplexes result from the association of four guanine-rich strands. Modification of the backbone strand or the guanine bases of the oligonucleotide may improve stability or introduce new functionalities. In this regard, the 8 position of a guanosine is particularly suitable for introduction of modifications since as it is positioned in the groove of the quadruplex structure. Modifications at this position should not interfere with structural assembly as would changes at Watson-Crick and Hoogsteen sites. In this study, we investigated the effect of an 8-methyl-2′-deoxyguanosine residue (M) on the structure and stability of tetramolecular parallel G-quadruplexes. In some cases, the presence of this residue resulted in the formation of unusual quadruplex structures containing all-syn tetrads. Furthermore, the modified nucleoside M at the 5′-end of the sequence accelerated quadruplex formation by 15-fold or more relative to the unmodified oligonucleotide, which makes this nucleobase an attractive replacement for guanine in the context of tetramolecular parallel quadruplexes.  相似文献   

10.
11.
Critical evidence for the biological relevance of G-quadruplexes (G4) has recently been obtained in seminal studies performed in a variety of organisms. Four-stranded G-quadruplex DNA structures are promising drug targets as these non-canonical structures appear to be involved in a number of key biological processes. Given the growing interest for G4, accurate tools to predict G-quadruplex propensity of a given DNA or RNA sequence are needed. Several algorithms such as Quadparser predict quadruplex forming propensity. However, a number of studies have established that sequences that are not detected by these tools do form G4 structures (false negatives) and that other sequences predicted to form G4 structures do not (false positives). Here we report development and testing of a radically different algorithm, G4Hunter that takes into account G-richness and G-skewness of a given sequence and gives a quadruplex propensity score as output. To validate this model, we tested it on a large dataset of 392 published sequences and experimentally evaluated quadruplex forming potential of 209 sequences using a combination of biophysical methods to assess quadruplex formation in vitro. We experimentally validated the G4Hunter algorithm on a short complete genome, that of the human mitochondria (16.6 kb), because of its relatively high GC content and GC skewness as well as the biological relevance of these quadruplexes near instability hotspots. We then applied the algorithm to genomes of a number of species, including humans, allowing us to conclude that the number of sequences capable of forming stable quadruplexes (at least in vitro) in the human genome is significantly higher, by a factor of 2–10, than previously thought.  相似文献   

12.
Kumar N  Maiti S 《Nucleic acids research》2008,36(17):5610-5622
Loop length and its composition are important for the structural and functional versatility of quadruplexes. To date studies on the loops have mainly concerned model sequences compared with naturally occurring quadruplex sequences which have diverse loop lengths and compositions. Herein, we have characterized 36 quadruplex-forming sequences from the promoter regions of various proto-oncogenes using CD, UV and native gel electrophoresis. We examined folding topologies and determined the thermodynamic profile for quadruplexes varying in total loop length (5–18 bases) and composition. We found that naturally occurring quadruplexes have variable thermodynamic stabilities (ΔG37) ranging from −1.7 to −15.6 kcal/mol. Overall, our results suggest that both loop length and its composition affect quadruplex structure and thermodynamics, thus making it difficult to draw generalized correlations between loop length and thermodynamic stability. Additionally, we compared the thermodynamic stability of quadruplexes and their respective duplexes to understand quadruplex–duplex competition. Our findings invoke a discussion on whether biological function is associated with quadruplexes with lower thermodynamic stability which undergo facile formation and disruption, or by quadruplexes with high thermodynamic stability.  相似文献   

13.
Abstract

Guanine rich DNA sequences of regulatory genomic regions form secondary structures known as G-quadruplexes usually stabilized by tetrads of Hoogsteen hydrogen bonded guanines. The in vivo existence of G-quadruplexes ascertains their biological roles. Human telomeric repeats are the most studied G-rich sequences. The four repeat Giardia telomeric sequence (TAGGG)4 differs from its human counterpart (TTAGGG)4, by deletion of one T at the G-tract intervening site of each repeat. We show here that whilst the two repeat Giardia telomeric sequence (TAGGG)2 forms parallel and antiparallel quadruplexes with tetramolecular topology exclusively, the four repeat version (TAGGG)4 forms a tetramolecular (antiparallel) and unimolecular (parallel) quadruplexes in Na+. The tetramolecular (antiparallel) G-quadruplex formed by four repeats of Giardia telomeric sequence is stabilized by the additional Watson-Crick bonding between its intervening TA bases aligned in antiparallel fashion. Four stranded antiparallel quadruplex for four repeats of any telomeric sequence have not been characterized till date. We hypothesize that telomeric association in antiparallel fashion, (via G-overhangs to form tetramolecular quadruplex) could be a biologically relevant molecular event. Further, coexistence of Hoogsteen as well as Watson-Crick base pairing might give insight for recognition of conformationally diverse DNA structures by ligands.

Communicated by Ramaswamy H. Sarma  相似文献   

14.
We studied the effect of antitumor cisplatin and inefficient transplatin on the structure and stability of G quadruplexes formed by the model human telomere sequence 5′-GGG(TTAGGG)3-3′ using circular dichroism, UV-monitored thermal denaturation, and gel electrophoresis. In addition, to investigate whether there is a connection between the ability of cisplatin or transplatin to affect telomerase activity and stability of G quadruplexes, we also used a modified telomere repeat amplification protocol assay that uses an oligonucleotide substrate for telomerase elongation susceptible to forming a G quadruplex. The results indicate that cisplatin is more efficient than transplatin in disturbing the quadruplex structure, thereby precluding telomeric sequences from forming quadruplexes. On the other hand, the results of this work also demonstrate that in absence of free platinum complex, DNA adducts of antitumor cisplatin inhibit telomerase catalysis, so the mechanism underlying this inhibition does not involve formation of the G quadruplexes which are not elongated by telomerase.  相似文献   

15.
Risitano A  Fox KR 《Biochemistry》2003,42(21):6507-6513
We have determined the stability of intramolecular quadruplexes that are formed by a variety of G-rich sequences, using oligonucleotides containing appropriately placed fluorophores and quenchers. The stability of these quadruplexes is compared with that of the DNA duplexes that are formed on addition of complementary C-rich oligonucleotides. We find that the linkers joining the G-tracts are not essential for folding and can be replaced with nonnucleosidic moieties, though their sequence composition profoundly affects quadruplex stability. Although the human telomere repeat sequence d[G(3)(TTAG(3))(3)] folds into a quadruplex structure, this forms a duplex in the presence of the complementary C-rich strand at physiological conditions. The Tetrahymena sequence d[G(4)(T(2)G(4))(3)], the sequence d[G(3)(T(2)G(3))(3)], and sequences related to regions of the c-myc promoter d(G(4)AG(4)T)(2) and d(G(4)AG(3)T)(2) preferentially adopt the quadruplex form in potassium-containing buffers, even in the presence of a 50-fold excess of their complementary C-rich strands, though the duplex predominates in the presence of sodium. The HIV integrase inhibitor d[G(3)(TG(3))(3)] forms an extremely stable quadruplex which is not affected by addition of a 50-fold excess of the complementary C-rich strand in both potassium- and sodium-containing buffers. Replacing the TTA loops of the human telomeric repeat with AAA causes a large decrease in quadruplex stability, though a sequence with AAA in the first loop and TTT in the second and third loops is slightly more stable.  相似文献   

16.
Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG3T) and its modified analogs containing a 5′-5′ or 3′-3′ inversion of polarity sites, namely d(3′TG5′-5′G2T3′), d(3′T5′-5′G3T3′) and d(5′TG3′-3′G2T5’) demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex structures with two binding sites, although the modified oligonucleotides also form, in variable amounts, quadruplex structures with only one bound cation. The inter-quartet cavities at the inversion of polarity sites bind ammonium ions less tightly than a naturally occurring 5′-3′ backbone. Exchange of 15 ions between G-quadruplex and bulk solution is faster at the 3′-end in comparison to the 5′-end. In addition to strand directionality, cation movement is influenced by formation of an all-syn G-quartet. Formation of such quartet has been observed also for the parent d(TG3T) that besides the canonical quadruplex with only all-anti G-quartets, forms a tetramolecular parallel quadruplex containing one all-syn G-quartet, never observed before in unmodified quadruplex structures.  相似文献   

17.
In addition to the well-known Watson–Crick double helix, DNA can form other structures. One of them is a four-stranded quadruplex, formation of which was also acknowledged in in vivo conditions. It was suggested that the presence of quadruplexes in e.g. telomeric region has a significant biological importance. We have studied structural properties of the human telomeric quadruplex formed by G3(T2AG3)3 and related sequences, in which each guanine base was one-by-one replaced by adenine. In the next step, we have studied sequences, in which two, or even four guanines were replaced by adenine. These sequences were studied in the presence of sodium or potassium ions. Using CD spectroscopy, UV thermal stability measurements, and polyacrylamide gel electrophoresis we found that none of the substitutions hindered the formation of the antiparallel quadruplex formed by the unsubstituted sequence in sodium solutions. However, the effect of substitution differed depending on the position of the guanine replaced. The middle quartet of the antiparallel basket scaffold was the most sensitive and led to the least stable structures. With other sequences, the effect of substitution depends on the position and also on the syn/anti glycosidic bond orientation of the appropriate guanosine in the original quadruplex structure. In the case of the multiple A for G substitutions, the G3(T2AG3)3 quadruplex was most destabilized by the G:G:A:A tetrad, in which the adenosines substituted syn guanosines. Interestingly, unlike with G3(T2AG3)3, no structural transitions were observed with the A-containing analogs of the sequence when sodium ions were replaced by potassium ions. The basic quadruplex topology remained antiparallel for all modified sequences in both salts. As in vivo misincorporation of A for a G in the telomeric sequence is possible and potassium is a physiological salt, these findings may be biologically important. In our next studies, we have compared the effect of the G to A substitutions in the human telomere sequence with 8-oxoguanine substituted samples or samples containing guanine apurinic sites. Data obtained from our study show a noticeable trend: it is not the type of the lesion but the position of the modification determines the effect on the conformation and stability of the quadruplex.  相似文献   

18.
Novel conjugated G-quadruplex-forming d(TG3AG) oligonucleotides, linked to hydrophobic groups through phosphodiester bonds at 5′-end, have been synthesized as potential anti-HIV aptamers, via a fully automated, online phosphoramidite-based solid-phase strategy. Conjugated quadruplexes showed pronounced anti-HIV activity with some preference for HIV-1, with inhibitory activity invariably in the low micromolar range. The CD and DSC monitored thermal denaturation studies on the resulting quadruplexes, indicated the insertion of lipophilic residue at the 5′-end, conferring always improved stability to the quadruplex complex (20 < ΔTm < 40 °C). The data suggest no direct functional relationship between the thermal stability and anti-HIV activity of the folded conjugated G-quartets. It would appear that the nature of the residue at 5′ end of the d(TG3AG) quadruplexes plays an important role in the thermodynamic stabilization but a minor influence on the anti-HIV activity. Moreover, a detailed CD and DSC analyses indicate a monophasic behaviour for sequences I and V, while for ODNs (IIIV) clearly show that these quadruplex structures deviate from simple two-state melting, supporting the hypothesis that intermediate states along the dissociation pathway may exist.  相似文献   

19.
We report two new structures of the quadruplex d(TGGGGT)4 obtained by single crystal X-ray diffraction. In one of them a thymine tetrad is found. Thus the yeast telomere sequences d(TG1–3) might be able to form continuous quadruplex structures, involving both guanine and thymine tetrads. Our study also shows substantial differences in the arrangement of thymines when compared with previous studies. We find five different types of organization: (i) groove binding with hydrogen bonds to guanines from a neighbour quadruplex; (ii) partially ordered groove binding, without any hydrogen bond; (iii) stacked thymine triads, formed at the 3′ends of the quadruplexes; (iv) a thymine tetrad between two guanine tetrads. Thymines are stabilized in pairs by single hydrogen bonds. A central sodium ion interacts with two thymines and contributes to the tetrad structure. (v) Completely disordered thymines which do not show any clear location in the crystal. The tetrads are stabilized by either Na+ or Tl+ ions. We show that by using MAD methods, Tl+ can be unambiguously located and distinguished from Na+. We can thus determine the preference for either ion in each ionic site of the structure under the conditions used by us.  相似文献   

20.
Abasic sites are common DNA lesions resulting from spontaneous depurination and excision of damaged nucleobases by DNA repair enzymes. However, the influence of the local sequence context on the structure of the abasic site and ultimately, its recognition and repair, remains elusive. In the present study, duplex DNAs with three different bases (G, C or T) opposite an abasic site have been synthesized in the same sequence context (5′-CCA AAG6 XA8C CGG G-3′, where X denotes the abasic site) and characterized by 2D NMR spectroscopy. Studies on a duplex DNA with an A opposite the abasic site in the same sequence has recently been reported [Chen,J., Dupradeau,F.-Y., Case,D.A., Turner,C.J. and Stubbe,J. (2007) Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096–3107]. Molecular modeling based on NMR-derived distance and dihedral angle restraints and molecular dynamics calculations have been applied to determine structural models and conformational flexibility of each duplex. The results indicate that all four duplexes adopt an overall B-form conformation with each unpaired base stacked between adjacent bases intrahelically. The conformation around the abasic site is more perturbed when the base opposite to the lesion is a pyrimidine (C or T) than a purine (G or A). In both the former cases, the neighboring base pairs (G6-C21 and A8-T19) are closer to each other than those in B-form DNA. Molecular dynamics simulations reveal that transient H-bond interactions between the unpaired pyrimidine (C20 or T20) and the base 3′ to the abasic site play an important role in perturbing the local conformation. These results provide structural insight into the dynamics of abasic sites that are intrinsically modulated by the bases opposite the abasic site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号