首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host traits partly determine the abundance and species richness of epiphytes in tropical forests. It has been proposed that older trees with rough bark and evergreens often house more individuals and more epiphytic species than those with thin, smooth, and peeling bark, which harbor few epiphytes. We hypothesize (i) that epiphytes are more abundant and species-rich in the more shaded forest, which is related to bark roughness, and (ii) that epiphytes are distributed in the middle of the host, where microenvironmental conditions are more favorable to survival. We evaluated abundance, species richness, and vertical distribution of epiphytes in two tropical dry forests, according to the deciduousness and basal area of the trees. Moreover, we selected the most abundant epiphytes to test whether their distribution is related to a specific bark type and examine their vertical distribution in two dry forests. We distinguished a high abundance and species richness of epiphytes in the deciduous forest, although basal area and host species richness were higher in the semi-deciduous forest. In both forests, we found a positive relationship between epiphyte abundance and basal area. Higher abundance of epiphytes was related to the predominance of Tillandsia schiedeana, a drought-adapted species, in both forests. Unexpectedly, epiphytes abundantly colonized Bursera simaruba, a host with peeling bark and a very branched crown, where small individuals of T. schiedeana colonized abundantly toward the top of the crown. Our results show the importance of the tropical dry forest, particularly, B. simaruba, in maintaining epiphyte diversity in terms of T. schiedeana colonization.  相似文献   

2.
We addressed the interacting effects of a natural large–scale fire and a subsequent major hurricane on relative positions of epiphytes in a subtropical forest. In Everglades National Park, subtropical hammocks (hardwood tree “islands”; burned and unburned) during the Ingraham Fire (1989) were surveyed for trees and epiphytic bromeliads (Tillandsia spp.) one year before, as well as one and five years after, Hurricane Andrew (1992). We measured trees (species, diameter, and status [alive/dead]) and epiphytes (species, height, host tree characteristics, substrate life status, and density). The fire decreased the height of epiphytes during the hurricane because branches and bark of trees killed by the fire were unstable epiphyte substrates in the high winds. Proportions of epiphytes on Quercus virginiana were equally increased after the hurricane in both unburned and burned hammocks; the large size and bark characteristics resulted in greater proportional survival of epiphytes on this species. During the five years following the hurricane, changes in the distributions of epiphytes generally were toward pre–hurricane distributions, but recovery was faster in unburned than burned hammocks. We conclude that disturbances that kill trees are likely to amplify the vertical reduction of epiphytes during a subsequent hurricane and that effects of a single disturbance on plant populations can be influenced by the disturbance history of the system, including different types of disturbances.  相似文献   

3.
The effects that epiphytes have on their hosts have been poorly explored in an experimentally. Correlational evidence suggests that epiphytes may be either mutualists or structural parasites, as has been proposed for Tillandsia recurvata on Parkinsonia praecox. To test the effect of T. recurvata upon P. praecox, the epiphyte load on branches of P. praecox was measured and two 1‐year experiments were performed to detect the effect of transplantation/removal of epiphytes and shade (0%, 35%. 50% and 80%) on shoot dynamics. If T. recurvata represents a selective pressure for P. praecox, then the frequency of branches carrying large epiphyte loads will be high, and host shoot survival will decrease in the presence of T. recurvata and with increased shade. A weak inverse relationship between epiphyte load and percentage of dead shoots in the host was detected. Shoot survival was independent of epiphyte presence. Shade decreased shoot survival by 35–72%. Results suggest that at the study site, T. recurvata is a commensalist of P. praecox. An alternative hypothesis to explain the correlation between high epiphyte load and branch/tree decay is that older branches carry more epiphytes, receive more shade from neighbouring branches and could be undergoing a natural decline process.  相似文献   

4.
The production of new leaves of host trees can be affected by the presence of epiphytic species. This experimental study was planned to evaluate the effects on the mean number of new leaves produced by Prosopis alba considering the factors site-disturbance, different epiphytes loads, and the respective zones in the tree crown. The number of new leaves produced was counted manipulating branches with originally low and high loads of epiphytes at different crown zones, in 10 trees per site. The effect of manual removal of epiphytes on the leaf production of the hosts was analyzed by comparing branch responses in short and medium periods of time (i.e., 6 months and 3 years, respectively). There were no significant differences when comparing the number of new leaves produced in the sampled trees at sites with different human disturbance intensities. By contrast, significant differences were observed between both epiphytic loads treatments and when comparing tree crown zones. Experimental results showed a higher subsequent host leaf production (>100%) in branches where epiphytes were experimentally removed, in comparison with branches with high load of epiphytes The number of new leaves produced in branches with naturally low loads of the epiphytes was higher than 1000% compared to branches with high Tillandsia loads. Finally, a higher significant production of new leaves was observed in the bottom crown zone as compared with the middle and upper crown zones. Furthermore, this trend was confirmed considering a longer time-period (3 years) after experimental removal of epiphytes. A significant increase (>100%) was observed when comparing the production of new leaves between different periods after total epiphyte removal. In consequence, Tillandsia species could be considered as “structural parasites” of Prosopis alba.  相似文献   

5.
We investigated species-specific relationships among two species of vascular epiphytes and ten host tree species in a coastal plain forest in the southeastern United States. The epiphytes Tillandsia usneoides and Polypodium polypodioides were highly associated with particular host species in the field, but host traits that favored colonization were inadequate to fully explain the epiphyte-host associations for either epiphyte. Field transplant experiments that bypassed epiphyte colonization demonstrated that the growth of epiphytes was significantly higher on host tree species that naturally bore high epiphyte loads than on host species with few or no epiphytes. These species-specific relationships were highly correlated with the water-holding capacity of the host tree's bark. Positive and negative effects of throughfall, light attenuation by the canopy, and bark stability did not explain the overall patterns of host specificity, but did correlate with some epiphyte-host species relationships. The relative importance of particular host traits differed between the "atmospheric epiphyte" Tillandsia, and the fern Polypodium, which roots in the bark of its hosts. Species-specific interactions among plants, such as those described here, suggest that communities are more than individualistic assemblages of co-occurring species.  相似文献   

6.
Spatial and temporal aspects of overwintering in the holocyclic sycamore aphid Drepanosiphum platanoidis (Schrank) (Homoptera: Callaphididae) were investigated. Eggs of D. platanoidis were principally laid on trunks and branches of Acer pseudoplatanusL., at considerable distances from the buds. Trunks with rough bark, followed by branches with moderate roughness supported more overwintering eggs than the relatively exposed smooth surfaces of twigs and terminal buds. Eggs were aggregated on rough bark. Aspect had no effect on the number of eggs laid. Experimental manipulations varying ovipara densities showed intra-specific competition among oviparae for optimal oviposition sites. Overwintering egg mortality was a function of time, with the greatest mortality rate occurring in late winter. Egg mortality varied from 80.4% to 76.9% on trunks and 83.0% to 65.9% on branches in 1996 and 1997.  相似文献   

7.
Because isolated trees in pasture experience greater exposure than forest trees, the epiphytes on them should be more drought and sun-tolerant. In Veracruz, Mexico, we compared the structure and nutrient content of the epiphyte community on five forest oaks (FO) in a fragment of lower montane cloud forest to that of five isolated oaks in pasture (IO). IO supported fewer epiphyte species than FO; 62.8% of the 35 epiphyte species were recorded only in one habitat (51.4% on FO and 11.4% on IO). Polypodium plebeium and Tillandsia spp. seedlings were more abundant on FO, while T. kirchhoffiana and T. punctulata were more abundant on IO. Evenness was lower on IO, which supported higher epiphyte biomass. pH, Ca, Mg, N, K, and Na concentrations were similar for FO and IO, with only Pextractable being lower on IO than FO. We concluded that when an epiphyte community is isolated (IO), the populations of some species expand while those of other diminish or disappear, a phenomenon that changes the structure of the epiphyte community becoming less even.  相似文献   

8.
Common problems faced in farming of the red algal genus Kappaphycus/Eucheuma are “ice-ice disease” and the occurrence of epiphytes. Considerable work has been documented on “ice-ice disease” and it's mode of infection but limited information is available on the emergence of epiphytes. The present study addresses the phenomenon of epiphyte infection, its prevalence in commercially cultivated red alga, Kappaphycus alvarezii, and their variability associated with seasonality. Cultured seaweed became susceptible to epiphytes in the dry seasons (1) between March – June and (2) September – November. Findings revealed Neosiphonia savatieri (Hariot) M. S. Kim et I. K. Lee, as the dominant infecting epiphyte, representing up to 80–85% of the epiphyte present during peak seasons. Besides N. savatieri, Neosiphonia apiculata, Ceramium sp., Acanthophora sp. and Centroceras sp. were observed in smaller quantities. SEM (Scanning Electron Microscope) micrographs revealed the epiphyte's attachment to the host. Further histological study showed the extent of penetration of epiphytes into the host's cortex tissues and condition of its surrounding tissues. The outbreak of epiphytic filamentous red algae also correlated with drastic changes in seawater temperature and salinity during March– June and September – November.  相似文献   

9.
The composition and distribution of vascular epiphytes were studied in two 1‐ha plots in the KNUST Botanic garden, Ghana. One‐hectare plot each was randomly set up in secondary and cultivated forests for the identification and enumeration of trees and shrubs (≥10 cm dbh), and epiphytes. Each tree was carefully examined, noting the presence, positions and life‐forms of all epiphytes. Twenty‐nine epiphyte (29) species belonging to fourteen genera and eleven families were identified in the study. These were hosted by 48 tree species and occurred in three life‐forms: hemi‐epiphytes (45%), casual epiphytes (45%) and true epiphytes (10%). The vascular epiphyte species made up 25.7% of all the identified plant species (excluding herbs and climbers) encountered. Host species (P < 0.001), habitat (P = 0.001) and their interaction (P < 0.001) had strong effects on epiphyte composition in the forests. Moraceae was the most dominant family (44.8%), while Nephrolepis undulata J. Sm. and N. biserrata (Sw.) Scott. were the commonest species of epiphytes. In terms of vertical distribution, most epiphytes were located on the trunk, while a few occurred in the canopy.  相似文献   

10.
In South Africa, more than 7000 t (f wt) of kelp (Ecklonia maxima) fronds are harvested annually to feed cultured abalone. Carpoblepharis flaccida, Gelidium vittatum and Polysiphonia virgata are conspicuous red algal epiphytes on older kelps and provide habitat and food for numerous animals. Over 4.5 y, we examined the effects of one destructive harvest of E. maxima on these 3 epiphytes. Two 20 × 20 m plots of kelp with similar epiphyte loads were demarcated. In one, all E. maxima sporophytes with stipes longer than 50 cm were harvested. The other plot served as a control. After 2.5 y the biomass of E. maxima in the harvested plot had recovered to control levels, but the epiphyte load (g epiphytes. Kg kelp−1) was statistically lower in the harvested plot after 2.5 and 3.5 y, and only recovered after 4.5 y. While most commercial harvesters cut through the “heads” (primary blades) of the kelp, effectively killing them, a new, non-lethal method removes secondary blades 20–30 cm from their bases, leaving the meristems and primary blades intact. At 5 sites studied, G. vittatum and P. virgata were found almost entirely on stipes and primary blades, and harvesting only distal parts of secondary blades limited losses to about 50% of C. flaccida biomass. To protect epiphytes, non-lethal harvesting is recommended and permanent non-harvest zones have been established in addition to limiting kelp yields and disallowing harvesting in Marine Protected Areas.  相似文献   

11.
Walter K. Dodds 《Oecologia》1991,85(4):572-580
Summary Interactions between epiphytes, epiphyte grazers and the filamentous green alga Cladophora glomerata (L.) Kuetzing were explored with smaples from rivers in Montana. Extracts of C. glomerata lowered photosynthetic rates of Nitzschia fonticola Grunow (an epiphytic diatom). Nutrient enrichment showed that C. glomerata from the Madison River was N deficient and its epiphytes were P deficient on 2 dates and N deficient on one date, while no nutrient deficiencies were detected in samples from 3 other rivers; this implies there was little nutrient competition between the epiphytes and C. glomerata. Epiphytes lowered drag on C. glomerata tufts and current velocity inside the tufts, apparently by decreasing the effective surface area. Lower drag may decrease detachment, but lowering current velocity from 8 to 0 cm s-1 resulted in a 100 % decrease in photosynthesis. Light absorption by epiphyte pigments may lower photosynthetic rate of C. glomerata when irradiance is below 200–500 E m-2 s-1, and protect against photoinhibition above this irradiance range. Invertebrate grazers (predominantly Baetis tricaudatus Dodds, Trycorythodes minutus Traver and Brachycentrus occidentalis Banks) at high densities removed 75% of epiphytes and B. occidentalis grazed on C. glomerata. Invertebrates regenerated a mean of 0.16 mol NH inf4 sup+ individual-1 d-1 which could have enhanced growth of downstream C. glomerata. Competition and grazing were not the only interactions in the C. glomerata community, positive (mutualistic) interactions were also important.  相似文献   

12.
Diversity of epiphytes is associated with niche partitioning, through vertical strata and host preferences. However, abundance of substrate offered by hosts differs between vertical strata, misleading if epiphytes prefer a stratum or are randomly distributed. In a tropical dry forest of San Andres de la Cal Morelos, central Mexico, we tested the null hypothesis, that epiphytes follow the abundance of the substrate, rather than showing preference for a particular vertical stratum, and tested whether microclimatic variables, seed germination and seedling survival match with observed epiphyte distribution. Our data show that epiphytes could be randomly distributed inside some host; but in some host species, certain structures presented either a deficit or an excess of all, atmospheric, or tank epiphytes. In the hosts Bursera copallifera and Bursera glabrifolia, distribution of epiphytes was biased towards the upper strata, with a deficit of epiphytes in the lower strata. In Conzattia multiflora, Sapium macrocarpum and Ipomoea pauciflora, epiphyte distribution was biased towards the lower strata. Vertical gradation of light, seed germination and seedling survival did not generally match with epiphyte distribution and did not support the notion that the microclimatic gradient governs the vertical distribution of epiphytes. Our data indicate that vertical distribution of epiphytes in such tropical dry forests is mainly driven by the distribution of the structures, which apparently influence dispersion of the seeds and by the lifespan of branches, which allow the concentration of epiphytes in the stratum that optimizes seed capture and the clonal growth of epiphytes.  相似文献   

13.
Host identity influences the guilds (epiphytes and xylophages) that interact within canopies. Host species can be categorized as either limiting or preferred hosts based on epiphyte load. It is possible that, depending on the host category (limiting or preferred), galleries bored by xylophages would affect the quality and availability of space for epiphytes. The objective of this study was to determine, among and within limiting and preferred hosts, the relationship between the damage inflicted by insects to branches and epiphytic bromeliads. We collected two branches each (with and without epiphytes, respectively) from limiting hosts (Bursera fagaroides, Ipomoea murucoides and I. pauciflora) and preferred hosts (Bursera copallifera and B. glabrifolia). The variables measured were: number and species of epiphytes, number of holes, number and taxonomical group of insects, percentage of epiphyte cover and percentage of area damaged by insects. These variables were compared among and within hosts and the significant correlations, where present, determined. We identified five bromeliad species and six taxonomical groups of insects. I. murucoides showed a higher proportion of damage and a larger number of insects. For the three limiting hosts, there was a negative relationship between (1) epiphyte cover and damaged area, (2) number of epiphyte individuals and number of xylophages and (3) number of epiphyte individuals and damaged area. Within species, B. copallifera, B. glabrifolia and I. pauciflora had more holes in branches that supported epiphytes than in branches without. We hypothesized that, inter-specifically, xylophages would interfere with the establishment of epiphytes by facilitating the release of allelopathics, but this possibility needs to be examined in more detail. Intra-specifically, it is possible that holes made by xylophages do not cause sufficient damage in hosts and, consequently, a possible repercussion on epiphytes is not reflected.  相似文献   

14.
High density commercial farming of carrageenophyte Kappaphycus alvarezii is often plagued with “ice-ice” disease and epiphyte infection, which eventually leads to reduced production and in some cases collapse of crop. Epiphyte outbreak has been occurring regularly in major carrageenophyte farms in the Philippines, Indonesia, Malaysia and Tanzania. Infected materials from these countries were studied to establish baseline information on the epiphyte’s identity, density, symptoms and secondary infection on the host seaweed. The causative organism was identified as Neosiphonia apiculata (Hollenberg) Masuda et Kogame, based on its morphological features. Epiphyte density on host seaweed materials decreased in the following order: the Philippines (88.5 epi cm−2), Tanzania (69.0 epi cm−2), Indonesia (56.5 epi cm−2) and Malaysia (42.0 epi cm−2). Initial symptoms were the presence of tiny black spots, indicating the embedded tetrasporeling in seaweed cortex layer. Vegetative form emerged after 2 weeks measuring less than 0.5 mm in length with a density of less than 25.0 epi cm−2. Upon maturation, infected seaweed takes on a “hairy” appearance with “goose-bumps” like cortical swellings. The epiphyte appears as a solitary plant with multiple secondary rhizoids or as multiple epiphytes appearing from a single cortical opening. At the end of infection, the epiphytes left dark pits on the cortical swelling, and the carrageenophytes are infected by opportunistic bacteria. Bacterial enumeration of healthy and infected seaweed materials showed an increase of more than 300% in total bacterial count on infected materials dominated by Alteromonas sp., Flavobacterium sp. and Vibrio sp.  相似文献   

15.
The vertical distribution of the density and richness of vascular and nonvascular epiphytes on some mature trees was studied in two 1 km2 plots in Miombo Woodland in Zambia (n = 20) and the Democratic Republic of Congo (D.R.C.) (n = 20). The aim was to assess the diversity of arboreal epiphytes and to investigate general distribution patterns of epiphytes along some individual mature phorophytes. Species richness was low on both sampling sites (24 in D.R.C. and nineteen in Zambia) with Orchidaceae being the richest family. Epiphyte density for both sampling plots was high with 92% of the available surface area being occupied. Lichens showed the highest density of 67.2% followed by moss 18.4%, orchids 7.9% and ferns 6.5%. Species richness and density showed a clear zonation within the canopy. Richness and density peaked in the upper and mid‐canopy and was positively correlated with available surface area, branch aspect and to some extent bark pH, but not with bark texture. This study demonstrated that tree canopies can harbour a diversity of epiphyte species, and the findings constitute baseline information in such environments.  相似文献   

16.
Carrie L. Woods 《Biotropica》2017,49(4):452-460
Epiphytes are integral to tropical forests yet little is understood about how succession proceeds in these communities. As trees increase in size they create microhabitats for late‐colonizing species in both small and large branches while maintaining small tree microhabitats for early colonizing species in the small and young branches. Thus, epiphyte succession may follow different models depending on the scale: at the scale of the entire tree, epiphytes may follow a species accumulation model where species are continuously added to the tree as trees increase in size but at the scale of one zone on a branch (e.g., inner crown: 0–2 m from the trunk), they may follow the replacement model of succession seen in terrestrial ecosystems. Assuming tree size as an indicator of tree age, I surveyed 61 Virola koschnyi trees of varying size (2.5–103.3 cm diameter at breast height) in lowland wet tropical forest in Costa Rica to examine how epiphyte communities change through succession. Epiphyte communities in small trees were nested subsets of those in large trees and epiphyte communities became more similar to the largest trees as trees increased in size. Furthermore, epiphyte species in small trees were replaced by mid‐ and late‐successional species in the oldest parts of the tree crown but dispersed toward the younger branches as trees increased in size. Thus, epiphyte succession followed a replacement model in particular zones within treecrowns but a species accumulation model at the scale of the entire tree crown.  相似文献   

17.
  • In several montane forests around the world, epiphytes coexist in mats, sharing the rhizosphere and forming histosol-type soils rich in nutrients. The role of these epiphytes in the formation of canopy soil and the fitness costs that epiphytes face when cohabiting in these mats are unknown.
  • In a lower montane cloud forest in central Veracruz, Mexico, a 2-year factorial experiment was carried out with the presence/absence of ramets of Phlebodium areolatum (Polypodiaceae), Tillandsia kirchhoffiana, T. multicaulis and T. punctulata (Bromeliaceae). We examined (i) which epiphyte species contribute to the formation of canopy soil, (ii) the role of epiphyte composition in the soil nutrient composition, and (iii) the fitness costs faced by epiphytes when cohabiting.
  • Canopy soil formation highest when P. areolatum is present. Soil nutrient content does not change with epiphyte composition, is influenced by the microbiota, and P content decreases with the presence of epiphytes. The fitness costs show that the species compete, decreasing their survival and growth, but the competitive capacity differs between the species.
  • We conclude that P. areolatum is an ecosystem engineer that promotes the creation of canopy soil but is a poor competitor. The results coincide with the model of succession by facilitation. Canopy soil is a slow-created component whose nutrient content does not depend on the epiphytic flora. In epiphyte mats, the dominant interactions are competitive, but there is also facilitation.
  相似文献   

18.
《新西兰生态学杂志》2011,35(3):296-301
Host bark traits are known to affect the characteristics of epiphyte communities in forests worldwide; however, few investigations of such relationships have been undertaken in New Zealand forests. By examining the trunk epiphyte communities on four co-occurring forest tree species (Agathis australis, Dacrydium cupressinum, Knightia excelsa and Vitex lucens) representing a range of bark characteristics, we sought evidence that bark traits may shape these communities. Sampling was conducted on tree trunks in the Waitakere and Hunua ranges in the Auckland Region. As expected, the rough but lightly shedding bark of Vitex lucens was found to support many epiphytes, whereas the coarsely flaking bark surface of Dacrydium cupressinum supported few epiphytes. Conversely, despite bark with a smooth texture that sheds in large flakes, and contrary to the suggestions of previous authors, Agathis australis trunks were found to support the greatest numbers of epiphytes and this species was one of the most frequent epiphyte hosts. The individual epiphytes found on Agathis australis, however, were significantly smaller and more appressed to the trunk than those on the other trees, and species composition differed from the other host species.  相似文献   

19.
Cladophora glomerata is a widely distributed filamentous freshwater alga that hosts a complex microalgal epiphyte assemblage. We manipulated nutrients and epiphyte abundances to access their effects on epiphyte biomass, epiphyte species composition, and C. glomerata growth. C. glomerata did not grow in response to these manipulations. Similarly, nutrient and epiphyte removal treatments did not alter epiphyte biovolume. Epiphyte species composition, however, changed dramatically with nutrient enrichment. The epiphyte assemblage on unenriched C. glomerata was dominated by Epithemia sorex and Epithemia adnata, whereas the assemblage on enriched C. glomerata was dominated by Achnanthidium minutissimum, Nitzschia palea and Synedra spp. These results indicate that nutrients strongly structure epiphyte species composition. Interactions between C. glomerata and its epiphytes were not affected by epiphyte species composition in our experiment but may be when C. glomerata is actively growing.  相似文献   

20.
The impact of human disturbance on colonisation dynamics of vascular epiphytes is poorly known. We studied abundance, diversity and floristic composition of epiphyte seedling establishing on isolated and adjacent forest trees in a tropical montane landscape. All vascular epiphytes were removed from plots on the trunk bases of Piptocoma discolor. Newly established epiphyte seedlings were recorded after 2 years, and their survival after another year. Seedling density, total richness at family and genus level, and the number of families and genera per plot were significantly reduced on isolated trees relative to forest trees. Seedling assemblages on trunks of forest trees were dominated by hygrophytic understorey ferns, those on isolated trees by xerotolerant canopy taxa. Colonisation probability on isolated trees was significantly higher for plots closer to forest but not for plots with greater canopy or bryophyte cover. Seedling mortality on isolated trees was significantly higher for mesophytic than for xerotolerant taxa. Our results show that altered recruitment can explain the long-term impoverishment of post-juvenile epiphyte assemblages on isolated remnant trees. We attribute these changes to a combination of dispersal constraints and the harsher microclimate documented by measurements of temperature and humidity. Although isolated trees in anthropogenic landscapes are considered key structures for the maintenance of forest biodiversity in many aspects, our results show that their value for the conservation of epiphytes can be limited. We suggest that abiotic seedling requirements will increasingly constitute a bottleneck for the persistence of vascular epiphytes in the face of ongoing habitat alteration and atmospheric warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号