首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined rat cells undergoing amelogenesis for the presence of three types of keratin proteins using a polyclonal antibody to keratin (against total keratins (TK) with molecular masses ranging from 41 to 65 kilodaltons (kd) and monoclonal antibodies keratins to KL1 and PKK1 (reactive with keratins with molecular masses of 55-57 and 41-56 kd, respectively). In normal oral epithelia from young rats, the TK, KL1, and PKK1 antibodies bound to all of the epithelial strata. The epithelial cap on the top of incisors and the dental lamina of molar teeth exhibited strong TK staining, moderate staining KL1, and little or no PKK1 staining. In developing molar enamel organs, both the outer and inner enamel epithelia, the stratum intermedium, and stellate reticulum cells were all positively stained by the TK immunoreagent. In developing incisors, TK only bound strongly to stratum-intermedium cells, and no KL1 and PKK1 staining antibodies was observed in ameloblasts or the stratum intermedium.  相似文献   

2.
Summary We obtained immnohistochemical profiles of several keratin proteins during experimentally induced carcinogenesis in hamster cheek-pouch mucosa using a polyclonal antibody (TK; detecting keratins with molecular masses of 41 65 kilodalton) and two monoclonal antibodies (KL1, 55- to 57-kilodalton keratins; PKK1; 40-, 45- and 52.5-kilodalton keratins). The squamous epithelium of normal pouch mucosa exhibited positive TK staining in all layers. KL1 staining in the spinous layer and PKK1 staining in the basal layer, thus indicating a regional or zonal distribution pattern. Epithelia undergoing basal hyperplasia showed irregular localization of PKK1 binding, while hyperkeratinized lesions exhibited the binding pattern found in normal epithelium. In case of epithelial dysplasia, there was reduced KL1 staining in spinous cells and decreased PKK1 staining in the basal and parabasal layers. Papillomas exhibited a rather zonal distribution of keratin staining. All squamous-cell carcinomas, irrespective of their degree of keratinization and infiltration pattern, showed slight or no PKK1 staining. Such lesions were only positive for KL1-detectable keratins in keratinizing tumour cells and exhibited an irregular distribution of TK binding. The expression of keratin proteins during carcinogenesis in hamster cheekpouch mucosa may parallel that of keratins in human squamous-cell carcinomas originating in the oral mucosa.  相似文献   

3.
We obtained immunohistochemical profiles of several keratin proteins during experimentally induced carcinogenesis in hamster cheek-pouch mucosa using a polyclonal antibody (TK; detecting keratins with molecular masses of 41-65 kilodalton) and two monoclonal antibodies (KL1, 55- to 57-kilodalton keratins; PKK1; 40-, 45- and 52.5-kilodalton keratins). The squamous epithelium of normal pouch mucosa exhibited positive TK staining in all layers, KL1 staining in the spinous layer and PKK1 staining in the basal layer, thus indicating a regional or zonal distribution pattern. Epithelia undergoing basal hyperplasia showed irregular localization of PKK1 binding, while hyperkeratinized lesions exhibited the binding pattern found in normal epithelium. In case of epithelial dysplasia, there was reduced KL1 staining in spinous cells and decreased PKK1 staining in the basal and parabasal layers. Papillomas exhibited a rather zonal distribution of keratin staining. All squamous-cell carcinomas, irrespective of their degree of keratinization and infiltration pattern, showed slight or no PKK1 staining. Such lesions were only positive for KL1-detectable keratins in keratinizing tumour cells and exhibited an irregular distribution of TK binding. The expression of keratin proteins during carcinogenesis in hamster cheek-pouch mucosa may parallel that of keratins in human squamous-cell carcinomas originating in the oral mucosa.  相似文献   

4.
Summary The immunohistochemical localization of keratins in the oral epithelia of several mammals was investigated using the monoclonal antibodies to keratins, PKK1 (41–56 kilodaltons) and KL1 (55–57 kilodaltons). The staining patterns obtained in different locations of the oral mucosa and of the skin epidermis were compared. In the papillae on the dorsal surface of the tongue, some areas exhibited marked PKK1 staining, while other area were PKK1 negative. In general, rodent oral epithelia were negative for PKK1 in the basal layer, while comparatively strong PKK1 staining was observed in cells of the upper spinous layer. In the epidermis, positive PKK1 reactions were confined to the basal layer, while KL1 staining was occasionally seen in the basal layer of oral epithelia. In cats, dogs, and monkeys, different PKK1 and KL1 binding patterns were observed in oral epithelia. Also, the distribution in oral epithelia differed from that seen in the epidermis of these animals. In the epidermis, the distribution of PKK1 and KL1 was regular, with PKK1 usually being confined to the basal layer, while KL1 binding was found in the spinous and granular cell layers, and was dependent on the degree of keratinization. In the animals studies, keratin expression as detected by PKK1 and KL1-was different in the skin epidermis and oral epithelia, and the localization of these keratins differed in the various types of oral mucosa.  相似文献   

5.
N Murase  S Fukui  M Mori 《Histochemistry》1986,85(4):265-276
The immunohistochemical localization of keratins in the oral epithelia of several mammals was investigated using the monoclonal antibodies to keratins, PKK1 (41-56 kilodaltons) and KL1 (55-57 kilodaltons). The staining patterns obtained in different locations of the oral mucosa and of the skin epidermis were compared. In the papillae on the dorsal surface of the tongue, some areas exhibited marked PKK1 staining, while other area were PKK1 negative. In general, rodent oral epithelia were negative for PKK1 in the basal layer, while comparatively strong PKK1 staining was observed in cells of the upper spinous layer. In the epidermis, positive PKK1 reactions were confined to the basal layer, while KL1 staining was occasionally seen in the basal layer of oral epithelia. In cats, dogs, and monkeys, different PKK1 and KL1 binding patterns were observed in oral epithelia. Also, the distribution in oral epithelia differed from that seen in the epidermis of these animals. In the epidermis, the distribution of PKK1 and KL1 was regular, with PKK1 usually being confined to the basal layer, while KL1 binding was found in the spinous and granular cell layers, and was dependent on the degree of keratinization. In the animals studies, keratin expression--as detected by PKK1 and KL1--was different in the skin epidermis and oral epithelia, and the localization of these keratins differed in the various types of oral mucosa.  相似文献   

6.
Immunohistochemical staining for S-100 protein and the intermediate filaments keratin and vimentin, was made in 41 salivary adenomas. In pleomorphic adenomas, great heterogeneity in the staining, as well as multiple and co-expressions of these proteins were found in the outer tumor cells of tubulo-ductal structures and modified myoepithelial cells, but not in the luminal tumor cells. All the outer tumor cells stained for S-100 protein, 97% for K8.12 keratin and 85% for vimentin. Of these cells, 29% showed multiple expression of K8.12 keratin, vimentin, and S-100 protein, and 17% showed co-expression of K8.12 and S-100 protein. Modified and neoplastic myoepithelial cells showed similar expressions of these proteins to those of outer tumor cells; myoepithelioma cells displayed the most complicated pattern, being positive for KL1, PKK1, and K8.12 keratins, vimentin and S-100 protein. In luminal tumor cells there was a heterogeneous expression of KL1 and PKK1 in 82%, and of KL1, PKK1, and K8.12 in only 14.7%. Based on the immunohistochemical findings obtained with different monoclonal antibodies in pleomorphic salivary adenomas, outer tumor cells may be derived from ductal basal cells and luminal tumor cells from intercalated duct cells.  相似文献   

7.
Immunohistochemical staining for S-100 protein and the intermediate filaments keratin and vimentin, was made in 41 salivary adenomas. In pleomorphic adenomas, great heterogeneity in the staining, as well as multiple and co-expressions of these proteins were found in the outer tumor cells of tubulo-ductal structures and modified myoepithelial cells, but not in the luminal tumor cells. All the outer tumor cells stained for S-100 protein, 97% for K8.12 keratin and 85% for vimentin. Of these cells, 29% showed multiple expression of K8.12 keratin, vimentin, and S-100 protein, and 17% showed co-expression of K8.12 and S-100 protein. Modified and neoplastic myoepithelial cells showed similar expressions of these proteins to those of outer tumor cells; myoepithelioma cells displayed the most complicated pattern, being positive for KL1, PKK1, and K8.12 keratins, vimentin and S-100 protein. In luminal tumor cells there was a heterogeneous expression of KL1 and PKK1 in 82%, and of KL1, PKK1, and K8.12 in only 14.7%. Based on the immunohistochemical findings obtained with different monoclonal antibodies in pleomorphic salivary adenomas, outer tumor cells may be derived from ductal basal cells and luminal tumor cells from intercalated duct cells.  相似文献   

8.
We have prepared three monoclonal antibodies against human epidermal keratins. These antibodies were highly specific for keratins and, in combination, recognized all major epidermal keratins of several mammalian species. We have used these antibodies to study the tissue distribution of epidermis-related keratins. In various mammalian epithelia, the antibodies recognized seven classes of keratins defined by their immunological reactivity and size. The 40, 46 and 52 kilodalton (kd) keratin classes were present in almost all epithelia; the 50 kd and 58 kd keratin classes were detected in all stratified squamous epithelia, but not in any simple epithelia; and the 56 kd and 65-67 kd keratin classes were unique to keratinized epidermis. Thus the expression of specific keratin classes appeared to correlate with different types of epithelial differentiation (simple versus stratified; keratinized versus nonkeratinized).  相似文献   

9.
We report on application of the highly sensitive and specific immunogold labeling method for ultrastructural investigation of keratin intermediate filament antigens in human epidermal cell suspensions. Triton X-100 pretreated cells proved accessible to the colloidal gold conjugate, thus enabling keratin filament bundles to be labeled. Anti-keratin KL1 and KL2 monoclonal antibodies were raised in mice after immunization with either human stratum corneum-isolated keratins or keratins extracted from human epidermal cells suspensions, respectively. Immunoelectron microscopy confirmed immunofluorescence and immunoperoxidase results of epidermal keratinocyte staining, and revealed two different antibody reactivity patterns: KL2 reacted with keratin filaments in keratinocytes of all epidermal layers, whereas antigen to KL1 was detected only on keratin of the suprabasal layers, not on the basal keratinocyte tonofilaments. The monoclonal antibody-recognized epitopes were specific for the keratin filaments. Vimentin-rich cells (melanocytes) were not stained in the same epidermal cell suspensions. Additionally, two distinct ultrastructural patterns of keratin filament epitope labeling were observed. KL1 and KL2 monoclonal antibodies react with two different antigenic determinants, depending on the stage of keratinocyte differentiation, and may therefore be used for immunohistochemical studies of various keratin-containing cells in normal and pathologic conditions.  相似文献   

10.
Mesenchyme-derived instructions for odontogenic epithelial differentiation into ameloblasts and the production of enamel matrix has been well established. However, it is not known how position-specific differences within the enamel organ of rodent molar tooth organs regulate the enamel-forming vs. the enamel free areas in the developing cusp. Light microscopy, transmission electron microscopy, and immunocytochemistry using a rabbit anti-mouse amelogenin antibody, were used to map the position-specific patterns within the enamel organ. In the enamel-forming area, ameloblasts were associated with stratum intermedium. In the enamel-free area, another cell type was interposed between inner enamel epithelia (IEE) and stratum intermedium. IEE in the enamel-free area did not have Tomes' processes and secreted enamel matrix not only toward dentin but also between IEE cells. IEE became confluent with stellate reticulum; at this position stratum intermedium cells were no longer detected. The thickness and orientation of dentin matrix collagen fibers in the enamel-free area were different from the fibers in the enamel-forming area. These results suggest that the patterns of epithelial cell-cell and cell-matrix associations during position-specific enamel organ epithelial differentiation may regulate ameloblast matrix synthesis and/or the matrix secretion pathway.  相似文献   

11.
Summary The cytokeratin distribution in the developing rat enamel organ from day 15 of gestation through to 11 days post partum was examined immunohistochemically using a panel of monoclonal antibodies. A temporo-spatial programme of keratin expression was observed during odontogenesis and positive reactivity of the enamel organ was seen with the pan keratin antibodies CK1 (clone LP34 — reacts with a number of keratins including 6 and 18) and AE1-3 (reacts with most acidic and basic keratins). No reactivity was observed in the enamel organ with the other antibodies examined (Ks 8.12 [reacts with keratins 13 and 16], Ks 8.60 [reacts with keratins 10 and 11) and MCA157 [reacts with rat liver antigen]), although these antibodies did stain other epithelial tissues. This study supports the view that the epithelial cells of the enamel organ synthesize a tissuspecific subset of keratins which are related to the differentiation of the cells.  相似文献   

12.
The cytokeratin distribution in the developing rat enamel organ from day 15 of gestation through to 11 days post partum was examined immunohistochemically using a panel of monoclonal antibodies. A temporo-spatial programme of keratin expression was observed during odontogenesis and positive reactivity of the enamel organ was seen with the pan keratin antibodies CK1 (clone LP34 - reacts with a number of keratins including 6 and 18) and AE1-3 (reacts with most acidic and basic keratins). No reactivity was observed in the enamel organ with the other antibodies examined (Ks 8.12 [reacts with keratins 13 and 16], Ks 8.60 [reacts with keratins 10 and 11) and MCA157 [reacts with rat liver antigen]), although these antibodies did stain other epithelial tissues. This study supports the view that the epithelial cells of the enamel organ synthesize a tissue-specific subset of keratins which are related to the differentiation of the cells.  相似文献   

13.
Nel-like molecule-1 (Nell-1) is a recently discovered secreted protein that plays an important role in osteoblast differentiation, bone formation, and bone regeneration. However, its expression and distribution during tooth development are largely unknown. The aim of this study was to investigate the expression patterns of Nell-1 during murine molar development by immunohistochemistry. Nell-1 protein was expressed during molar development in embryonic and postnatal Kunming mice, but its expression levels and patterns at various developmental stages differed. At embryonic day 13.5 (E13.5) and E14.5, Nell-1 was found in both the entire enamel organ and the underlying mesenchyme. At E16.5, it was detected in the inner and outer enamel epithelia, stratum intermedium, secondary enamel knot, and dental papilla. At E18.5, Nell-1 was expressed in the differentiating ameloblasts, differentiating odontoblasts, and stratum intermedium. Positive staining was also found in the outer enamel epithelium. At postnatal day 2.5 (P2.5), P5, and P7, Nell-1 appeared in the secretory and mature ameloblasts and odontoblasts (odontoblastic bodies and processes) as well as immature enamel. Hertwig’s epithelial root sheath also stained positively at P7. At P13.5, positive staining was restricted to the reduced dental epithelium and odontoblasts, whereas Nell-1 disappeared in the mature enamel. During tooth eruption, Nell-1 was observed only in the odontoblastic bodies, odontoblastic processes, and endothelial cells of blood vessels. The spatiotemporal expression patterns of Nell-1 during murine tooth development suggest that it might play an important role in ameloblast and odontoblast differentiation, secretion and mineralization of the extracellular enamel matrix, molar crown morphogenesis, as well as root formation.  相似文献   

14.
Immunohistochemical expression of 8 cases of mucoepidermoid carcinomas (G-I, 3 cases; G-II, 2 cases; and G-III, 3 cases) revealed marked heterogeneity of the proteins examined. Immunohistochemically detectable keratins (TK, KL1, and PKK1) were distributed in epidermoid cells, but were absent in mucous secreting cells. Strongly positive deposits of keratin proteins were detected in squamoid tumor cells in the G-I tumors. The tumor cells displayed positive staining for S-100 alpha, but did not stain with polyclonal S-100 antiserum or with monoclonal S-100 beta. The cells showing highest reactivity for S-100 protein were scattered in neoplastic foci and were probably Langerhans cells. Lactoferrin and lysozyme reactions were generally negative in tumor foci; but a positive reaction for lactoferrin was found in luminal tumor cells although rarely, and lysozyme staining was occasionally noted in histiocytes in the stroma. Amylase activity was usually absent in the tumor cells, with the exception of one case in which it was confined to the tumor cells. Mucoepidermoid carcinomas of various grades indicated marked heterogeneity in terms of various immunohistochemically detectable proteins.  相似文献   

15.
We have used a double-labelling flow cytometry analysis of keratin (CK) and DNA in breast cancer. Five monoclonal anti-keratin antibodies were tested: KL1 recognizing Mr 55,000-57,000 keratins, and "anti-glandular epithelia," LE41, RGE-53, and LP2K specific for CK n. 7, 8, 18, and 19 of Moll's classification, respectively. Flow cytometric (DNA-CK) analysis was performed on 10 benign and 19 malignant human breast tumors. All the benign tumors were diploid and 63% of the malignant tumors were aneuploid. This technique permits the analysis of DNA in the epithelial fraction alone. In aneuploid tumors, gating the DNA-keratin-positive population allowed accurate DNA analysis without interference due to debris background and non-epithelial cells. Moreover, double-labelling using the CK19 antibody gave a better identification of near-diploid tumors. An enhancement of keratin expression in malignant tumors was observed with CK 19 (P less than 0.001), KL1 (P less than 0.01), CK 8 (P less than 0.05), and CK18 (n.s.) compared to benign tumors. The comparison of keratin expression in aneuploid and diploid malignant tumors revealed reduced CK8, CK18, and CK19 in the former.  相似文献   

16.
The mouse thymic epithelial network was studied using three different anti-keratin antibodies. One of these antibodies, KL1, exclusively recognized a small subset of medullary epithelial cells characterized by its content of a high molecular weight keratin (63 kD). Since epithelial differentiation is known to be associated with the acquisition of high molecular weight keratins, KL1-positive cells, which express the Ia antigen and secrete thymulin, may represent a subset of highly differentiated cells among mouse thymic epithelial cells (TEC). These data reflect the heterogeneity of the thymic epithelium and support the concept that distinct TEC subsets might provide the thymus with different microenvironments.  相似文献   

17.
Summary The outer surface of adult Gallus domesticus scutate scale was studied as a model for epidermal cornification involving accumulation of both alpha and beta keratins. Electron-microscopic analysis demonstrated that the basal cells of the adult epidermis contained abundant lipid droplets and that filament bundles and desmosomes were distributed throughout the cell layers. Indirect immunofluorescence microscopy and double-labeling immunogold-electron microscopy confirmed that the stratum germinativum contained alpha keratin but not beta keratin. Beta keratins were first detected in the stratum intermedium and were always found intermingled with filament bundles of alpha keratin. As the differentiating cells moved into the outer regions of the stratum intermedium and the stratum corneum, the large mixed keratin filament bundles labeled increasingly more with beta keratin antiserum and relatively less so with alpha keratin antiserum. Sodium dodecyl sulfate-polyacrylamide gel analysis of vertical layers of the outer surface of the scutate scale confirmed that cells having reached the outermost layers of stratum corneum had preferentially lost alpha keratin. The mixed bundles of alpha and beta keratin filaments were closely associated with desmosomes in the lower stratum intermedium and with electron-dense aggregates in the cytoplasm of cells in the outer stratum intermedium. Using anti-desmosomal serum it was shown that these cytoplasmic plaques were desmosomes.  相似文献   

18.
Summary Tracheas from vitamin A-deficient hamsters in organ culture in vitamin A-free medium developed squamous metaplasia. Addition of retinyl acetate to the medium prevented squamous metaplasia and a mucociliary epithelium was maintained. Indirect immunofluorescent staining with antikeratin antibodies AE1 and AE3 indicated positive reactions with epithelium of tracheas either cultured in vitamin A-free or retinyl acetate (RAc)-containing medium. The “stratum corneum”-like squames in metaplastic tracheas were strongly stained by AE3. Immunoprecipitation of cytoskeletal extracts from [35S]methionine labeled tracheas with a multivalent keratin antiserum indicated that the concentration of keratins synthesized in tracheas cultured in vitamin A-free medium was greater than that observed in tracheas cultured in the presence of RAc. In addition, new species of keratin were expressed in tracheas cultured in RAc-free medium. Alterations in the program of keratin synthesis were clearly detectable after 1 d in vitamin A-free medium, even though squamous metaplasia was not yet obvious. Squamous tracheas were shown by immunoblot analysis to contain keratins of 50, 48, 46.5, and 45 kilodalton (kd) detected with AE1; and 58, 56, and 52 kd detected with AE3. Immunoblot analysis with monospecific antimouse keratin sera also demonstrated the presence of 60, 55, and 50 kd keratins in the metaplastic tracheas. All these various species of keratins were either absent or present in much reduced quantity in mucociliary tracheas in RAc-containing medium. Interestingly, the induction of squamous metaplasia in tracheal epithelium did not result in the expression of the 59 and 67 kd keratins which are characteristically expressed in the differentiated layers of the epidermis. Therefore, this study shows that squamous metaplasia of tracheas due to vitamin A-free cultivation is accompanied by an increase in keratin synthesis as well as by the appearance of keratin species not normally present in mucociliary tracheal epithelium.  相似文献   

19.
The keratins are a highly heterogeneous group of proteins that form intermediate filaments in a wide variety of epithelial cells. These proteins can be divided into at least seven major classes according to their molecular weight and their immunological reactivity with monoclonal antibodies. Tissue-distribution studies have revealed a correlation between the expression of specific keratin classes and different morphological features of in vivo epithelial differentiation (simple vs. stratified; keratinized vs. nonkeratinized). Specifically, a 50,000- and a 58,000-dalton keratin class were found in all stratified epithelia but not in simple epithelia, and a 56,500- and a 65-67,000-dalton keratin class were found only in keratinized epidermis. To determine whether these keratin classes can serve as markers for identifying epithelial cells in culture, we analyzed cytoskeletal proteins from various cultured human cells by the immunoblot technique using AE1 and AE3 monoclonal antikeratin antibodies. The 56,500- and 65-67,000-dalton keratins were not expressed in any cultured epithelial cells examined so far, reflecting the fact that none of them underwent morphological keratinization. The 50,000- and 58,000-dalton keratin classes were detected in all cultured cells that originated from stratified squamous epithelia, but not in cells that originated from simple epithelia. Furthermore, human epidermal cells growing as a monolayer in low calcium medium continued to express the 50,000- and 58,000-dalton keratin classes. These findings suggest that the 50,000- and 58,000-dalton keratin classes may be regarded as "permanent" markers for stratified squamous epithelial cells (keratinocytes), and that the expression of these keratin markers does not depend on the process of cellular stratification. The selective expression of the 50,000- and 58,000-dalton keratin classes, which are synthesized in large quantities on a per cell basis, may explain the high keratin content of cultured keratinocytes.  相似文献   

20.
E Fuchs  H Green 《Cell》1981,25(3):617-625
Vitamin A is known to exert an important influence on epithelial differentiation. The fetal calf serum supplement of cell-culture medium contains enough of the vitamin to affect the differentiation of cultured keratinocytes derived from epidermis and from other stratified squamous epithelia. The cellular and molecular properties of the cultures are altered when the medium is supplemented with serum from which the vitamin A has been removed by solvent extraction (delipidized serum). Cell motility is reduced, the adhesiveness of cells increases and pattern formation is prevented. In both epidermal and conjunctival keratinocytes, removal of vitamin A leads to the synthesis of a 67 kd keratin characteristic of terminally differentiating epidermis and to much reduced synthesis of the 52 kd and 40 kd keratins typical of conjunctiva. These changes, both cellular and molecular, are reversed by the addition of retinyl acetate to the medium containing delipidized serum. Cell motility and pattern formation are restored, and detachment of the most mature cells from the surface of the stratified epithelium is promoted. Synthesis of the 67 kd keratin is prevented and the synthesis of the 40 and 52 kd keratins is stimulated. The nature of the keratins synthesized is regulated by the concentration of vitamin A, and each cell type adjusts its synthesis differently at a given vitamin concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号