首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrate antigens are immune targets associated with a variety of pathogens and tumor cells. Unfortunately, most carbohydrates are intrinsically T cell-independent antigens, which diminishes their efficacy as immunogens. The conversion of carbohydrate epitopes to peptide mimotopes is one means to overcome the T cell-independent nature of carbohydrate antigens because peptides have an absolute requirement for T cells. Although such conversion has great potential for the development of veterinarian and human vaccines, there are issues related to the use of peptide-based immunogens as functional surrogates. Some of these issues are fundamental, pertaining to how mimicry comes about at the molecular level, and some are application oriented, directed at elucidating important immunological mechanisms. In this article the potential and caveats of this technology regarding its application in vaccine discovery are analyzed.  相似文献   

2.
T cells, as they develop in the thymus come to express antigen receptors. The specificity of these receptors cannot be predicted and must include many with potential anti-self reactivity. Those that encounter self-antigens, in association with self-MHC (major histocompatibility complex), with high affinity are inactivated and do not leave the thymus. Not all self-antigens however are expressed in the thymus and thus many potentially self-reactive T cells enter the periphery. It poses therefore a fundamental immunological question: how peripheral self-tolerance is maintained in health? Dendritic cells (DC) play a central role in the activation of T cells, especially na?ve T cells. Their importance in initiating immune responses against pathogens has been well established. However, DC represent complex populations of cells. Recent advances in our knowledge including molecular understanding of DC/T cell interactions have begun to reveal another important dimension of DC functions in the periphery, being not only initiators but also regulators of the immune system. This review summarises recent findings on the roles of DC in the regulation of immune responses and the maintenance of peripheral tolerance, in an attempt to explain how break down of this may lead to immunopathologies and autoimmunity. The concept of a regulatory DC and its possible role in the generation of T regulatory cells in health and in diseases are also discussed. Based on these, the need for a "continuing education" of the immune system throughout one's life, in which DC are again the "tutors", is postulated.  相似文献   

3.
Bradley JE  Jackson JA 《Parasitology》2008,135(7):807-823
Carefully chosen immunological measurements, informed by recent advances in our understanding of the diversity and control of immune mechanisms, can add great interpretative value to ecological studies of infection. This is especially so for co-infection studies, where interactions between species are often mediated via the host's immune response. Here we consider how immunological measurements can strengthen inference in different types of co-infection analysis. In particular, we identify how measuring immune response variables in field studies can help reveal inter-species interactions otherwise obscured by confounding processes operating on count or prevalence data. Furthermore, we suggest that, due to the difficulty of quantifying microbial pathogen communities in field studies, innate responses against broad pathogen types (mediated by pattern response receptors) may be useful quantitative markers of exposure to bacteria and viruses. An ultimate goal of ecological co-infection studies may also be to understand how dynamics within host-parasite assemblages emerge from trade-offs involving different arms of the immune system. We reflect on the phenotypic measures that might best represent levels of responsiveness and bias in immune function. These include mediators associated with different T-helper cell subsets and innate responses controlled by pattern response receptors, such as the Toll-like receptors (TLRs).  相似文献   

4.
5.
In order to grow within an immunocompetent host, tumour cells have evolved various strategies to cope with the host’s immune system. These strategies include the downregulation of surface molecules and the secretion of immunosuppressive factors like IL-10 and PGE2 that impair the maturation of immune effector cells, among other mechanisms. Recently, tumour exosomes (TEX) have also been implicated in tumour-induced immune suppression as it has been shown that TEX can induce apoptosis in T lymphocytes. In this study, we extend our knowledge about immunosuppressive features of these microvesicles in that we show that TEX efficiently bind and sequester tumour-reactive antibodies and dramatically reduce their binding to tumour cells. Moreover, we demonstrate that this antibody sequestration reduces the antibody-dependent cytotoxicity by immune effector cells, which is among the most important anti-tumour reactions of the immune system and a significant activity of therapeutic antibodies. Taken together, these data point to the fact that tumour-derived exosomes interfere with the tumour-specific function of immune cells and constitute an additional mechanism how tumours escape from immune surveillance.  相似文献   

6.
Receptors on cytotoxic T lymphocytes and natural killer cells play well-established roles in the immunological response and share a common ligand in the form of MHC-I. We discuss how a variety of MHC-I receptors are also expressed on myelomonocytic cells such as macrophages and dendritic cells. Since myelomonocytic MHC-I receptors recognise a broad range of alleles and MHC-I structures, we propose that their task is to discern expression levels and folding forms of MHC. We describe a model in which these recognition events would regulate bidirectional cross talk between cells of innate and adaptive immune systems to organise an ongoing combined immune response. We discuss how such a model is supported by recent literature and might function in a variety of contexts, including immunoregulation during pregnancy. Our model also offers an alternative explanation of immune dysregulation rather than autoimmunity during HLA-B27-associated spondyloarthropathies and addresses a number of conundrums in this field.  相似文献   

7.
Although most monoclonal antibodies developed for cancer therapy are of the IgG class, antibodies of the IgE class have certain properties that make them attractive as cancer therapeutics. These properties include the superior affinity for the Fc epsilon receptors (FcεRs), the low serum level of IgE that minimizes competition of endogenous IgE for FcεR occupancy, and the ability to induce a broad and vigorous immune response through the interaction with multiple cells including mast cells, basophils, monocytes, macrophages, dendritic cells, and eosinophils. Tumor-targeted IgE antibodies are expected to harness the allergic response against tumors and activate a secondary, T-cell-mediated immune response. Importantly, the IgE antibody can be used for passive immunotherapy and as an adjuvant of cancer vaccines. However, there are important limitations in the use of animal models including the fact that human IgE does not interact with rodent FcεRs and that there is a different cellular distribution of FcεRs in humans and rodents. Despite these limitations, different murine models have been used with success to evaluate the in vivo anti-cancer activity of several IgE antibodies. These models include wild-type immunocompetent animals bearing syngeneic tumors, xenograft models using immunocompromised mice bearing human tumors and reconstituted with human effector cells, and human FcεRIα transgenic mice bearing syngeneic tumors. In addition, non-human primates such as cynomolgus monkeys can be potentially used for toxicological and pharmacokinetic studies. This article describes the advantages and disadvantages of these models and their use in evaluating the in vivo properties of IgE antibodies for cancer therapy.  相似文献   

8.
Innate immunity of fish (overview)   总被引:11,自引:0,他引:11  
The innate immune system is the only defence weapon of invertebrates and a fundamental defence mechanism of fish. The innate system also plays an instructive role in the acquired immune response and homeostasis and is therefore equally important in higher vertebrates. The innate system's recognition of non-self and danger signals is served by a limited number of germ-line encoded pattern recognition receptors/proteins, which recognise pathogen associated molecular patterns like bacterial and fungal glycoproteins and lipopolysaccharides and intracellular components released through injury or infection. The innate immune system is divided into physical barriers, cellular and humoral components. Humoral parameters include growth inhibitors, various lytic enzymes and components of the complement pathways, agglutinins and precipitins (opsonins, primarily lectins), natural antibodies, cytokines, chemokines and antibacterial peptides. Several external and internal factors can influence the activity of innate immune parameters. Temperature changes, handling and crowding stress can have suppressive effects on innate parameters, whereas several food additives and immunostimulants can enhance different innate factors. There is limited data available about the ontogenic development of the innate immunological system in fish. Active phagocytes, complement components and enzyme activity, like lysozyme and cathepsins, are present early in the development, before or soon after hatching.  相似文献   

9.
Antibody-driven phagocytosis is induced via the engagement of Fc receptors on professional phagocytes, and can contribute to both clearance as well as pathology of disease. While the properties of the variable domains of antibodies have long been considered critical to in vivo function, the ability of antibodies to recruit innate immune cells via their Fc domains has become increasingly appreciated as a major factor in their efficacy, both in the setting of recombinant monoclonal antibody therapy, as well as in the course of natural infection or vaccination(1-3). Importantly, despite its nomenclature as a constant domain, the antibody Fc domain does not have constant function, and is strongly modulated by IgG subclass (IgG1-4) and glycosylation at Asparagine 297(4-6). Thus, this method to study functional differences of antigen-specific antibodies in clinical samples will facilitate correlation of the phagocytic potential of antibodies to disease state, susceptibility to infection, progression, or clinical outcome. Furthermore, this effector function is particularly important in light of the documented ability of antibodies to enhance infection by providing pathogens access into host cells via Fc receptor-driven phagocytosis(7). Additionally, there is some evidence that phagocytic uptake of immune complexes can impact the Th1/Th2 polarization of the immune response(8). Here, we describe an assay designed to detect differences in antibody-induced phagocytosis, which may be caused by differential IgG subclass, glycan structure at Asn297, as well as the ability to form immune complexes of antigen-specific antibodies in a high-throughput fashion. To this end, 1 μm fluorescent beads are coated with antigen, then incubated with clinical antibody samples, generating fluorescent antigen specific immune complexes. These antibody-opsonized beads are then incubated with a monocytic cell line expressing multiple FcγRs, including both inhibitory and activating. Assay output can include phagocytic activity, cytokine secretion, and patterns of FcγRs usage, and are determined in a standardized manner, making this a highly useful system for parsing differences in this antibody-dependent effector function in both infection and vaccine-mediated protection(9).  相似文献   

10.
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.  相似文献   

11.
One of the main functions of mitochondria is production of ATP for cellular energy needs, however, it becomes more recognized that mitochondria are involved in differentiation and activation processes of immune cells. Upon activation, immune cells have a high need for energy. Immune cells have different strategies to generate this energy. In pro-inflammatory cells, such as activated monocytes and activated T and B cells, the energy is generated by increasing glycolysis, while in regulatory cells, such as regulatory T cells or M2 macrophages, energy is generated by increasing mitochondrial function and beta-oxidation.Except for being important for energy supply during activation, mitochondria also induce immune responses. During an infection, they release mitochondrial danger associated molecules (DAMPs) that resemble structures of bacterial derived pathogen associated molecular patterns (PAMPs). Such mitochondrial DAMPS are for instance mitochondrial DNA with hypomethylated CpG motifs or a specific lipid that is only present in prokaryotic bacteria and mitochondria, i.e. cardiolipin. Via release of such DAMPs, mitochondria guide the immune response towards an inflammatory response against pathogens. This is an important mechanism in early detection of an infection and in stimulating and sustaining immune responses to fight infections. However, mitochondrial DAMPs may also have a negative impact. If mitochondrial DAMPs are released by damaged cells, without the presence of an infection, such as after a trauma, mitochondrial DAMPs may induce an undesired inflammatory response, resulting in tissue damage and organ dysfunction. Thus, immune cells have developed mechanisms to prevent such undesired immune activation by mitochondrial components.In the present narrative review, we will describe the current view of mitochondria in regulation of immune responses. We will also discuss the current knowledge on disturbed mitochondrial function in immune cells in various immunological diseases.  相似文献   

12.
Hiom K 《DNA Repair》2010,9(12):1256-1263
The repair of DNA double strand breaks (dsb) is important for maintaining the physical and genetic integrity of the genome. Moreover, in humans it is associated with the prevention of diseases such as immune deficiencies and cancer. This review briefly explores the fundamental strategies for repairing dsb, examines how cells maximize the fidelity of dsb repair in the cell cycle and discusses the requirements for dsb repair in the context of chromatin.  相似文献   

13.
Autophagy is a fundamental eukaryotic process with multiple cytoplasmic homeostatic roles, recently expanded to include unique stand-alone immunological functions and interactions with nearly all parts of the immune system. In this article, we review this growing repertoire of autophagy roles in innate and adaptive immunity and inflammation. Its unique functions include cell-autonomous elimination of intracellular microbes facilitated by specific receptors. Other intersections of autophagy with immune processes encompass effects on inflammasome activation and secretion of its substrates, including IL-1β, effector and regulatory interactions with TLRs and Nod-like receptors, Ag presentation, naive T cell repertoire selection, and mature T cell development and homeostasis. Genome-wide association studies in human populations strongly implicate autophagy in chronic inflammatory disease and autoimmune disorders. Collectively, the unique features of autophagy as an immunological process and its contributions to other arms of the immune system represent a new immunological paradigm.  相似文献   

14.
A single-cell detector is described that combines the natural signal amplification of whole-cell biosensors with the flexibility and specificity of immunological recognition. An immune cell that expresses receptors for the constant region of immunoglobulin G (IgG) is loaded with a Ca(2+)-indicating dye and with antibodies directed against the protein of interest. Introduction of a multivalent protein antigen causes cross-linking of the receptors, which results in a detectable increase in the concentration of cytosolic Ca(2+). Some immune cell lines respond to stimulation with oscillations in their cytosolic Ca(2+) levels that complicate their use as detectors. The human monocytic cell line U-937, when treated with the cytokine interferon-gamma, produces a large, short-lived Ca(2+) signal in response to cross-linking of its high-affinity IgG receptors. U-937 was therefore chosen for development as an immunity-based detector. Human and rabbit antibodies are found to effectively stimulate the cell, causing a prompt and transient response. The cell is able to respond to repeated stimulation, though the response diminishes during rapid stimulation. Ovalbumin can be detected in micromolar concentrations. Possible fundamental constraints on the size of a detectable analyte are discussed.  相似文献   

15.
In the last few years. chemokines have emerged as an important superfamily where importance extends far beyond their most famous function as inflammatory mediators. Indeed, they are important molecules not only in inflammatory responses but also as immunoregulators. Chemokines ensure the continuous recirculation of immune cells among the various anatomical microenvironments, and are essential for maintaining immunological homeostasis. In addition, chemokines also have critical functions in lymphocyte development. In this article, we review the role of chemokines and their receptors in lymphopoiesis, lymphocyte's migration and immune response.  相似文献   

16.
Recognition of Streptococcus pneumoniae by the innate immune system   总被引:1,自引:0,他引:1  
Streptococcus pneumoniae is both a frequent colonizer of the upper respiratory tract and a leading cause of life-threatening infections such as pneumonia, meningitis and sepsis. The innate immune system is critical for the control of colonization and for defence during invasive disease. Initially, pneumococci are recognized by different sensors of the innate immune system called pattern recognition receptors (PRRs), which control most subsequent host defence pathways. These PRRs include the transmembrane Toll-like receptors (TLRs) as well as the cytosolic NOD-like receptors (NLRs) and DNA sensors. Recognition of S. pneumoniae by members of these PRR families regulates the production of inflammatory mediators that orchestrate the following immune response of infected as well as neighbouring non-infected cells, stimulates the recruitment of immune cells such as neutrophils and macrophages, and shapes the adaptive immunity. This review summarizes the current knowledge of the function of different PRRs in S. pneumoniae infection.  相似文献   

17.
Accumulating research has revealed that erythrocytes play unique roles in the innate immune system. Once thought of as immunologically inert cells, erythrocytes are functional cells that exert diverse immunological effects. Although mature mammal erythrocytes lack internal organelles, they express various receptors, which provide an extraordinary ability for erythrocytes to clear or sequester circulating molecules that affect immune functions. In this review, we elucidate some crucial immunological molecules associated with erythrocytes, such as CR1, CD47, TLR9, and cytokines. CR1 acts as a bridge in clearing off immune complexes and an entrance gate for some pathogens. CD47, once bound to SIRPα, generates an inhibitory signal in macrophage phagocytosis. Reciprocally, erythrocyte CD47 undergoes a conformational change during oxidative stress-induced cellular senescence, subsequently activating phagocytic signals through binding to TSP-1. TLR9 recognizes unmethylated CpG-DNA present in viruses and bacteria. Erythrocyte TLR9 also binds to and eliminates mitochondrial DNA. Erythrocytes can recruit chemokines and modulate plasma chemokine levels through the Duffy antigen receptor for chemokines (DARC). Moreover, erythrocytes may exert immune functions by releasing danger-associated molecular patterns (DAMPs), i.e., heme, IL-33, ATP, and Hsp70. Heme bound with toll-like receptor 4 (TLR4) has the potential to trigger an inflammatory response. Similarly, IL-33, ATP, and Hsp70 from damaged erythrocytes may be involved in the innate immune response via diverse signaling mechanisms. This review provides novel insight into the immunological functions of erythrocytes, which play an irreplaceable role in innate immune responses. We argue that erythrocyte-involved immune function is a widespread area warranting intensive investigation.  相似文献   

18.
Antibody engineering for therapeutics   总被引:5,自引:0,他引:5  
With the acceptance of antibodies as therapeutics, a diversity of engineered antibody forms have been created to improve their efficacy, including enhancing the effector functions of full-length antibodies, delivering toxins to kill cells or cytokines in order to stimulate the immune system, and bispecific antibodies to target multiple receptors. After years of in vitro investigation, many of these are now moving into clinical trials and are showing promise. A potential new type of effector function for antibodies, that is, the generation of reactive oxygen species that may effect inflammation or bacterial killing, has been elucidated. In addition, the field has expanded beyond a concentration on immunoglobulin G to include immunoglobulin A antibodies as potential therapeutics.  相似文献   

19.
The simplest application of the modern genetic manipulation methods to vaccine development is the expression in microbial cells of genes from pathogens that encode surface antigens capable of inducing neutralizing antibodies in the host of the pathogen involved. This procedure has been exploited successfully for development of a vaccine against hepatitis B virus (HBV) that is now widely used. Similar approaches have been directed towards formulations for immunization against several other animal and human diseases and some of these preparations are now presently in trials. Of no less importance is the impact of biotechnology in providing reagents for fundamental studies of topics such as the determination of virulence, antigenic variation, virus receptors and the immunological response to viral antigens. The core antigen of HBV is a good example of a product of genetic engineering that is a valuable diagnostic reagent, and that is finding important use in immunological studies of particular pertinence to vaccine development.  相似文献   

20.
《Seminars in Virology》1993,4(3):181-186
Several host immune mechanisms are activated in the course of a herpes simplex virus infection. These include natural resistance mechanisms (natural killer cells and interferon), antiviral antibodies and effector CD4 and CD8 T lymphocytes. An important mechanism in the control of viral replication in epidermal cells involves the recruitment and activation of macrophages by CD4 T cells. In some instances, the action of CD4 T cells can lead to immune pathology following infection of the eye (stromal ketatitis) or central nervous system (demyelination). Despite the efficiency of the immune response in countering infection, the virus has evolved strategies to subvert the action of antibodies and complement and the detection of infected cells by cytotoxic T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号