首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the neutral, Mg2+-stimulated sphingomyelinase of cultured neuroblastoma cells (N1E-115) is enriched in the plasma membrane fraction and is reduced following treatment of intact or broken cells with trypsin, α-chymotrypsin, papain, and protease. Two protease-sensitive enzymes of the cell interior (lactate dehydrogenase and NADPH-cytochrome c reductase) are not affected by protease treatment of intact cells. These results indicate that the neutral, Mg2+-stimulated sphingomyelinase is oriented externally on the plasma membrane of the cultured neuroblastoma cell.  相似文献   

2.
Activated sphingomyelinases release ceramide molecules believed to be involved in intracellular signalling. The present study investigated whether soluble C2-ceramide modulates some of the effects of N-formylmethionylleucyl phenylalanine (fMLP) and other agonists on human neutrophils (or polymorphonuclear leukocytes-PMN); principally superoxide anion (O2) production. The preincubation of PMN for 15 min with C2-ceramide increased by up to almost 3-fold the amounts of O2 generated in response to 0.1 and 1 μM fMLP. Priming was detected at C2-ceramide concentrations of 2 μM to 4 μM per million PMN. Though less potent than C2-ceramide, C6-ceramide (N-hexanoylsphingosine) could prime for O2 generated in response to 0.1 μM fMLP, with maximal effects obtained at 10–20 μM. In contrast, micromolar concentrations of sphingosine, dihydroceramide, and ceramide-phosphate, failed to exert any potentiating effect on fMLP-induced O2 generation. As expected, TNF-α (1000 U/ml), also primed for fMLP-induced O2 production; however, the combination of TNF-α and C2-ceramide showed no additive effect. Moreover, S. aureus sphingomyelinase (0.1 U/ml), was unable to reproduce the priming effects of C2-ceramide and TNF-α. C2-ceramide at 2 μM did not enhance the production of O2 induced by 100 nM recombinant human interleukin-8 (IL-8), leukotriene B4 (LTB4), platelet-activating factor (PAF) or 20 mM sodium fluoride (NaF). Furthermore, C2-ceramide (2 μM) did not enhance the mobilization of calcium, the release of arachidonic acid or the accumulation of phosphatidylethanol, induced by 100 nM fMLP. This suggests that probably neither phospholipases C, A2 or D (PLC, PLA2, PLD) were involved in the priming effect by C2-ceramide. However, C2-ceramide inhibited in a dose-related manner the production of O2 induced by phorbol 12-myristate 13-acetate (PMA) and mezerein. Furthermore, PMA-stimulated PLD activity was also significantly reduced by a preincubation of PMN with C2-ceramide. The priming O2 production by C2-ceramide could involve yet unidentified mechanisms specific for fMLP, or it might imply that cytokines such as TNF-α have different mechanisms than C2-ceramide.  相似文献   

3.
《BBA》1986,850(2):380-389
The effects of removal and reconstitution of the three extrinsic proteins on the flash O2 yield were investigated and the following results were obtained. (1) Removal in darkness of the 24 and 16 kDa proteins affected neither the oscillation pattern nor the signal amplitude of the flash O2 yield. However, the signal amplitude was reduced with a factor of 2 in the presence of EDTA and was restored by excess Ca2+. The EDTA treatment did not change the oscillation pattern of the flash O2 yield, but considerably damped the oscillation pattern of thermoluminescence B band. These results suggest a heterogeneity among the centers in binding affinity for Ca2+, and that Ca2+ removal induces an all-or-none type inactivation of O2 evolution but not in the thermoluminescence processes, indicative of an inhibition of the S-state turnover at a specific S-state. (2) Removal in darkness of the 33, 24 and 16 kDa proteins abolished the flash O2 yield, but the inhibited yield was appreciably restored either by reconstitution with the 33 kDa protein or by inclusion of 200 mM Cl in the reaction mixture. The flash O2 yield reconstituted by the 33 kDa protein exhibited a rather normal oscillation pattern accompanied by a slightly increased damping, which could be simulated by assuming a high miss factor (30%) for S3 → S0 transition. The Cl-restored flash O2 yield exhibited a strongly damped oscillation pattern with obscured maxima at the 4th and 8th flashes, which was simulated by assuming a much higher miss factor (70%) for S3 → S0 transition. It was indicated that the Cl-restored O2 evolution considerably differs from the 33 kDa protein-reconstituted O2 evolution with respect to the mechanism of S-state turnover.  相似文献   

4.
Catalase is a key enzyme in seed recovery from ageing during priming   总被引:3,自引:0,他引:3  
Ageing induces seed deterioration expressed as the loss of seed vigour and/or viability. Priming treatment, which consists in soaking of seeds in a solution of low water potential, has been shown to reinvigorate aged seeds. We investigate the importance of catalase in oxidation protection during accelerated ageing and repair during subsequent priming treatment of sunflower (Helianthus annuus L.) seeds. Seeds equilibrated to 0.29 g H2O g−1 dry matter (DM) were aged at 35 °C for different durations and then primed by incubation for 7 days at 15 °C in a solution of polyethylene glycol 8000 at −2 MPa. Accelerated ageing affected seed germination and priming treatment reversed partially the ageing effect. The inhibition of catalase by the addition of aminotriazol during priming treatment reduced seed repair indicating that catalase plays a key role in protection and repair systems during ageing. Ageing was associated with H2O2 accumulation as showed by biochemical quantification and CeCl3 staining. Catalase was reduced at the level of gene expression, protein content and affinity. Interestingly, priming induced catalase synthesis by activating expression and translation of the enzyme. Immunocytolocalization of catalase showed that the enzyme co-localized with H2O2 in the cytosol. These results clearly indicate that priming induce the synthesis of catalase which is involved in seed recovery during priming.  相似文献   

5.
We investigated activation signaling events in bone marrow-derived macrophages after infection with Leishmania donovani, an intracellular parasite of macrophages. Leishmania donovani infection caused a general suppression of activation parameters like O2- and NO production. However, conditions which allow parasite attachment and prevent entry resulted in triggering of O2- and NO production and stimulation of O2 consumption. Optimal NO and O2- production occurred when bone marrow-derived macrophages and Leishmania ratio was 1:100. The activation signal for O2- production was initiated 15 min after parasite attachment, whereas augmentation of NO production started 6 h after attachment. Activation of O2- and NO generation by L. donovani attachment was inhibited by staurosporine as well as by prolonged treatment of phorbol myristate acetate suggesting a protein kinase C-dependent mechanism. Translocation studies showed that protein kinase C activity in cell membrane fraction rapidly and transiently increased following parasite attachment. No such protein kinase C translocation event occurred in L. donovani infected bone marrow-derived macrophages. Phorbol myristate acetate was found to stimulate membrane translocation of protein kinase C in parasite attached cells whereas it was impaired in infected cells. However, both attachment and infection induced a similar shift of phorbol receptors from cytosolic to membrane fraction indicating that in infected cells the translocation of protein kinase C protein was not impaired but the activity of the membrane associated enzyme was somehow inhibited. These results suggest that although internalization of intracellular parasites like L. donovani caused inhibition of nitrite and superoxide release, mere attachment on macrophage surface resulted in an activation of protein kinase C-mediated downstream oxidative events.  相似文献   

6.
Exposure of bovine pulmonary artery smooth muscle plasma membrane suspension with the oxidant H2O2 (1 mM) stimulated Ca2+ATPase activity. We sought to determine the role of matrix metalloprotease-2 (MMP-2) in stimulating Ca2+ATPase activity by H2O2 in the smooth muscle plasma membrane. The smooth muscle membrane possesses a Ca2+-dependent protease activity in the gelatin containing zymogram having an apparent molecular mass of 72 kDa. The 72 kDa protease activity was found to be inhibited by EGTA, 1: 10-phenanthroline, a2-macroglobulin and tissue inhibitor of metalloprotease-2 (TIMP-2) indicating that the Ca2+-dependent 72 kDa protease is the MMP-2. Western immunoblot studies of the membrane suspension with polyclonal antibodies of MMP-2 and TIMP-2 revealed that MMP-2 and TIMP-2, respectively, are the ambient matrix metalloprotease and the corresponding tissue inhibitor of metalloprotease in the membrane. In addition to increasing the Ca2+ATPase activity, H2O2 also enhanced the activity of the smooth muscle plasma membrane associated protease activity as evidenced by its ability to degrade14C-gelatin. The protease activity and the Ca2+ATPase activity were prevented by the antioxidant, vitamin E, indicating that the effect produced by H2O2 was due to reactive oxidant species(es). Both basal and H2O2 stimulated MMP-2 activity and Ca2+ATPase activity were inhibited by the general inhibitors of matrix metalloproteases: EGTA, 1: 10-phenanthroline, α2-macroglobulin and also by TIMP-2 (the specific inhibitor of MMP-2) indicating that H2O2 increased MMP-2 activity and that subsequently stimulated Ca2+ATPase activity in the plasma membrane. This was further confirmed by the following observations: (i) adding low doses of MMP-2 or H2O2 to the smooth muscle membrane suspension caused submaximal increase in Ca2+ATPase activity, and pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity; (ii) combined treatment of the membrane with low doses of MMP-2 and H2O2 augments further the Ca2+ATPase activity caused by the respective low doses of either H2O2 or MMP-2; and (iii) pretreatment with TIMP-2 prevents the increase in Ca2+ATPase activity in the membrane caused by the combined treatment of MMP-2 and H2O2.  相似文献   

7.
R L Preston 《Life sciences》1979,24(7):633-637
The unidirectional influx of phenylalanine across the mucosal brush border of rabbit ileum is reduced by pretreatment with papain. Phenylalanine influx is reduced to 10–15% of the control value by 60–90 minutes of preincubation with papain. Pretreatment with protease from Streptomyces griseus has no effect on phenylalanine influx. Kinetic analysis of the effect of papain indicates that the maximum velocity is reduced with little change in the apparent Michaelis-constant for phenylalanine. The data suggest that papain attacks a membrane protein required for transport. This protein is unaffected by protease which indicates the susceptible region of the protein is shielded by the membrane or inaccessible to protease.  相似文献   

8.
《BBA》1987,892(2):224-235
The effects of Cl depletion and removal of the 33 kDa extrinsic protein on the charge stabilization in O2-evolving Photosystem II (PS II) particles were studied by curve fitting and deconvolution of thermoluminescence bands. The following results were obtained. (1) Cl depletion reversibly decreases the redox potential of the S2 state by 60–80 mV, and thereby elevates the recombination temperature of both S2QB and S2QA charge pairs. (2) Removal of the 33 kDa extrinsic protein specifically elevates the recombination temperature of the S2QA charge pair, with practically no effect on the S2QB pair. This was tentatively interpreted as showing that the protein removal decreases the redox potential of both S2 and QB, but not of QA, and, thus, the effects are mutually cancelled for the S2QB pair, but are manifested for the S2QA pair. (3) Deconvolution of glow curves demonstrated that S3 is not formed in Cl-depleted PS II, but is formed in 33 kDa protein-depleted PS II even at a low (20 mM) Cl concentration. Analysis of thermoluminescence oscillations confirmed that Cl depletion interrupts S2-S3 transition, whereas the protein removal interrupts S3-(S4)-S0 transition at mM Cl. (4) Cl depletion by SO2−4 replacement in the absence of 33 kDa protein affected thermoluminescence in a different way from that in the presence of the protein. Based on these findings, the properties of charge pairs in the Cl-depleted PS II particles were discussed in relation to the role of the 33 kDa extrinsic protein.  相似文献   

9.
Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2∙−) as part of the innate host defense system, but exaggerated and sustained O2∙− generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2∙− and peroxynitrite (ONOO) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2∙− and ONOO production in macrophages, which was significantly reduced by nitrite (10 µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2∙− generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response.  相似文献   

10.
《Life sciences》1997,61(15):PL199-PL204
Contrasting effects of okadaic acid (OKA) on neutrophil (PMN) superoxide anion (O2) generation have been reported. In this study, we examined the effect of OKA on phorbol myristate acetate (PMA)-stimulated O2 generation in rat PMNs primed with LPS in vivo (LPS-PMN) and saline-treated rat PMNs (SAL-PMN). The following results were observed: (1) OKA, but neither genistein nor vanadate, markedly reduced O2 generation in a dose and time-dependent manner; (2) genistein, a tyrosine kinase inhibitor, as well as OKA, reduced tyrosine phosphorylation; (3) sodium orthovanadate, a tyrosine phosphatase inhibitor, potently enhanced tyrosine phosphorylation. Our studies suggest that OKA might reduce tyrosine phosphorylation by affecting the activity of tyrosine phosphatases regulated by serine-threonine phosphorylation. © 1997 Elsevier Science Inc.  相似文献   

11.
Onion seeds were primed in polyethylene glycol solutions (PEG) (-1.5 MPa) for 14 days at 15°C on filter paper and in bubble columns containing 50 g seed litre-1 PEG using air or enriched air (75% O2/25% N2) to aerate and suspend the seeds. Compared with untreated seeds, priming seeds in bubble columns using enriched air increased the percentage seed germination but it did not when air was used, or when seeds were primed on filter paper. Mean germination times (tm) were significantly reduced in all cases but the reduction was greatest using enriched air and least using air. The spread of germination times was significantly reduced only for seeds primed in enriched air. Drying seeds following priming reduced the percentage germination compared with untreated seeds, but only significantly for those primed in bubble columns using air. Drying also increased the mean germination times by 1.5 to 1.8 days (relative to primed seed which had not been dried). Seeds primed in enriched air were least affected. This increased time is that typically required for water re-imbibition after drying. Priming with enriched air followed by drying gave the same number of normal seedlings as untreated seeds.  相似文献   

12.
To investigate the pathogenesis of oxygen toxicity in the newborn brain, we exposed one-day-old Sprague-Dawley albino rats to 100% O2 and measured whole-brain high-energy phosphates, glucose, lactate, and free fatty acids (FFA) after 0, 15, 30, 60 and 120 min. Whole-brain adenosine triphosphate and creatine phosphate fell significantly from about 4.5 to 2.5 μmol-mg−1 protein. Brain lactate remained at about 0.3 μmol·mg−1 protein in hyperoxic rats, but increased in normoxic rats, from 0.3 to 1.3 μmol·mg−1 protein at 120 min. Total FFA decreased from 30 to 15 nmol·mg−1 protein during normoxia, but increased to 40 nmol·mg−1 protein during hyperoxia. Undetectable in normoxic rats, arachidonic acid increased to between 4 and 6 nmol·mg−1 protein during hyperoxia while oleic acid increased by two to threefold. In normoxia, palmitate decreased by 70% from 12 to 4 nmol·mg−1 protein whereas in hyperoxia it remained at 10 nmol·mg−1 protein. Normobaric 100% O2 has detrimental metabolic effects on the neonatal brain which cannot be attributed to cerebral vasospasm or seizure-induced cerebral anoxia because lactic acidosis was not observed. FFA changes suggest that a likely explanation is membrane lipid peroxidation from O2-induced free radicals.  相似文献   

13.
Synaptosomal-associated protein of 23 kDa (SNAP-23) plays an important role during regulated exocytosis of various inflammatory mediators, stored in secretory granules, from mast cells in response to physiological triggers. It is however synthesized as a soluble protein, and the mechanisms by which free SNAP-23 gets peripherally associated with membrane for the regulation of exocytosis, are poorly defined. SNAP-23 contains a hydrophobic domain with five closely spaced cysteines which get palmitoylated, and we show that SNAP-23 cysteine mutants show differential membrane association when transfected in rat basophilic leukemia (RBL) mast cells. SNAP-23 Cys mutant, devoid of all five cysteines, and SNAP-23 P119A (proline to alanine) mutant, that likely interferes with palmitoylation of SNAP-23 by palmitoyl transferases are completely cytosolic. Mutating specific cysteines (Cys; C) to leucine or phenylalanine (L or F; retains hydrophobicity but lacks palmitoylation) partially decreases the membrane association of SNAP-23 which is further hampered by alanine (A; has lesser hydrophobicity, and lacks palmitoylation) mutation at C79, C80 or C83 position. Cloning a transmembrane domain MDR31–145 from multidrug resistance protein into SNAP-23 Cys mutant is able to partially restore its membrane association. Regulated exocytosis studies using co-transfected human growth hormone (hGH) secretion reporter plasmid revealed that overexpression of SNAP-23 Cys and P119A mutants significantly inhibits the overall extent of exocytosis from RBL mast cells, whereas expression of SNAP-23 Cys-MDR31–145 fusion protein is able to restore exocytosis. These results establish that the cysteine-rich domain of SNAP-23 regulates its membrane association and thereby also regulates exocytosis from mast cells.  相似文献   

14.
The interaction of the inhibitor VJ (InhVJ), isolated from sea anemone R. macrodactylus, with different proteases was investigated using the method of biosensor analysis. The following enzymes were tested: serine proteases (trypsin, α-chymotrypsin, plasmin, thrombin, kallikrein), cysteina protease (papain) and aspartic protease (pepsin). In the rage of the concentrations studied (10–400 nM) inhibitor VJ interacted only with trypsin and α-chymotrypsin. The intermolecular complexes formation between inhibitor VJ and each of these enzymes was characterized by the following kinetic and thermodynamics parameters: KD = 7.38 × 10?8 M and 9.93 × 10?7 M for pairs InhVJ/trypsin and InhVJ/α-chymotrypsin, respectively.  相似文献   

15.
The terminal process of xylogenesis, autolysis, is essential for the formation of a tubular system for conduction of water and solutes throughout the whole plant. Several hydrolase types are implicated in autolysis responsible for the breakdown of cytoplasm. Here, we characterize p48h-17 cDNA from in vitro tracheary elements (TEs) of Zinnia elegans which encodes a preproprotein similar to papain. The putative mature protein, a cysteine protease, has a molecular mass of 22,699 Da with a pI of 5.7. DNA gel blot analysis indicated that p48h-17 is likely encoded by one or two genes. The p48h-17 mRNA accumulated markedly in in vitro differentiating TEs, whereas it appeared not to be induced in response to senescence and wounding in the leaves or H2O2 challenge in the cultured mesophyll cells. In stems, the expression of the p48h-17 gene was preferentially associated with differentiating xylem. Activity gel assays demonstrated that a cysteine and a serine protease, which had apparent molecular masses of 20 kDa and 60 kDa, respectively, were markedly induced during in vitro TE differentiation. The cysteine protease activity was also preferentially present in the xylem of Zinnia stems. Transient expression of the p48h-17 cDNA in tobacco protoplasts resulted in the production of a 20 kDa cysteine protease. Taken together, the results indicate that the p48h-17 gene appears to be preferentially associated with xylogenesis, and both the cysteine and serine proteases might be involved in autolysis during xylogenesis.  相似文献   

16.
《Gene》1996,179(1):45-51
Various aspects, mechanisms and functions of the oxidative burst with generation of O2 superoxide anions in plant cells, which is stimulated by active defence-inducing agents such as fungal infection or elicitor treatment, were reviewed mainly on the basis of experimental evidence obtained in a system of Solanaceae plants and Phytophthora spp. The oxidative burst may be due to an O2-generating NADPH oxidase in the plasma membrane, which is activated with combinations of cytosolic proteins, Ca2+, calmodulin and protein kinase, following stimulation by elicitor molecules. The oxidative burst may play the role of an internal emergency signal for induction of the metabolic cascade for active defence.  相似文献   

17.
Macrophage-derived nitric oxide (NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by NO itself or NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O2). In vivo, the facile extracellular diffusion of NO as well as different competing consumption routes limit its bioavailability for the reaction with O2 and, hence, peroxynitrite formation. In this work, we evaluated the extent by which NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O2 and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of NO and O2-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O2 reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of NO and O2--forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, NO consumption by RBC will limit the extracellular formation (and subsequent cytotoxic effects) of peroxynitrite by activated macrophages, while the intraphagosomal yield of peroxynitrite will remain unaffected.  相似文献   

18.
Although a weak direct stimulus of superoxide anion (O2?) production, platelet-activating factor (PAF) markedly enhances responses to chemotactic peptides (such as n-formyl-met-leu-phe, FMLP) and phorbol esters (such as phorbol myristate acetate, PMA) in human neutrophils. The mechanism of priming was explored first through inhibition of steps in the signal transduction pathway at and following PAF receptor occupation. Priming was not altered by pertussis toxin or intracellular calcium chelation, but the PAF receptor antagonist WEB 2086 and the protein kinase C (PKC) inhibitors sphinganine and staurosporine significantly inhibited the primed response. In order to study the regulation of PAF priming, the effect of PAF alone was desensitized by exposure to escalating doses of PAF prior to exposure to the secondary stimuli. The priming effect of PAF was not desensitized under these conditions. The role of PKC in desensitization was also studied. Prior exposure to PAF also desensitized the increase in membrane PKC activity evoked by a single concentration of PAF. However, when the PAF response was desensitized, PKC priming of the response to FMLP or PMA still occurred, suggesting that PKC activity may play a role in the maintenance of the primed state despite PAF desensitization. These data suggest that: (1) PAF priming is receptor- and PKC-mediated but is independent of pertussis toxin-inhibitable G-proteins or intracellular calcium, (2) during migration in vivo, neutrophils may be desensitized to the direct effects of PAF but maintain the capacity for enhanced responses to other stimuli, (3) desensitization of PAF-induced particulate PKC activity also occurs, but PAF primes PKC activity despite PAF desensitization, and (4) distinct mechanisms govern the direct and priming effects of PAF on oxidative metabolism. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Using a continuous spectrophotometric assay, we have monitored the formation of superoxide anion (O2?) by activated and resident murine peritoneal macrophages. Macrophages elicited by injection with Corynebacterium parvum, as well as resident macrophages from untreated mice, were kept in suspension culture overnight to eliminate short-lived, contaminating neutrophils. Cytochemical analysis of the cultured macrophages disclosed that essentially all of the activated macrophages reduced nitroblue tetrazolium (NBT) dye vigorously. In contrast, only 18% of the resident macrophages demonstrated vigorous NBT reduction; the remainder of the resident macrophages reduced NBT very weakly. Kinetic analysis of macrophage O2? formation revealed that activated macrophages exposed to phorbol myristate acetate (PMA) produced O2? at a 13-fold greater maximum rate than resident macrophages. The decline in the rate of O2? production with time by activated macrophages was also greater than that of resident macrophages. The data indicate that the greater O2? production by activated macrophage populations is due to (i) the presence of an increased percentage of macrophages that respond to PMA with vigorous O2? production, and (ii) an increased maximum rate of O2? formation by these macrophages.  相似文献   

20.
In this study we investigated the cell cycle response of Vicia faba and Pisum sativum root tip meristems to ioxynil treatments at two concentrations, (10−-4m and 10−-6m ). After 24 h of treatment at 10−-4m concentration, O2 uptake and ATP concentrations were significantly reduced. The mitotic index was reduced and the cell cycle population position was shifted to indicate that previously inhibited cells reformed their nuclei and became tetraploid. Prolonged treatment at this concentration resulted in cell death. Treatment with ioxynil at 10−-6m reduced the rate of entry into mitosis. Abnormal mitotic figures in all stages were observed, and the ploidy level of mitotically inhibited cells was doubled. These observations indicated that at 10−-6m concentration ioxynil acts as a preprophase inhibitor, that is, it does not act directly on the mitotic apparatus but does affect processes on which mitosis depends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号