首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some ABC transporters play a significant role in human health and illness because they confer multidrug resistance (MDR) through their overexpression. Compounds that inhibit the drug efflux mechanism can improve efficacy or reverse resistance. Of the eight described ABC transporter subfamilies, those proteins conferring MDR in humans are in subfamilies A, B, C, and G. In nematodes, transporters in subfamilies B and C are suggested to confer resistance to ivermectin. The Brugia malayi ABC transporter superfamily was examined to assess their potential to influence sensitivity to moxidectin. There was an increase in expression of ABC transporters in subfamilies A, B, C, and G following treatment. Co-administration of moxidectin with inhibitors of ABC transporter function did not enhance sensitivity to moxidectin in males; however, sensitivity was significantly enhanced in females and microfilariae. The work suggests that ABC transporters influence sensitivity to moxidectin and have a potential role in drug resistance.  相似文献   

2.
An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC(2)(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments.  相似文献   

3.
Zhang JT 《Cell research》2007,17(4):311-323
Multidrug resistance (MDR) is a major problem in cancer chemotherapy. One of the best known mechanisms of MDR is the elevated expression of ATP-binding cassette (ABC) transporters. While some members of human ABC transporters have been shown to cause drug resistance with elevated expression, it is not yet known whether the over-expression of other members could also contribute to drug resistance in many model cancer cell lines and clinics. The recent development ofmicroarrays and quantitative PCR arrays for expression profiling analysis of ABC transporters has helped address these issues. In this article, various arrays with limited or full list of ABC transporter genes and their use in identifying ABC transporter genes in drug resistance and chemo-sensitivity prediction will be reviewed.  相似文献   

4.
Multidrug resistance (MDR) of neoplastic cells, i.e. resistance towards large groups of unrelated drugs, represents the phenomenon that dramatically depresses the effectiveness of cancer chemotherapy. Membrane transport of ATPases from ABC superfamily plays an important role in MDR. In the present paper we are aiming to compare two members of this family: P-glycoprotein (PGP products of mdr genes) and multidrug resistance-associated protein (MRP, products of mrp genes) and their impact for MDR of neoplastic cells.  相似文献   

5.
All fungal genomes harbour numerous ABC (ATP-binding cassette) proteins located in various cellular compartments such as the plasma membrane, vacuoles, peroxisomes and mitochondria. Most of them have initially been discovered through their ability to confer resistance to a multitude of drugs, a phenomenon called PDR (pleiotropic drug resistance) or MDR (multidrug resistance). Studying the mechanisms underlying PDR/MDR in yeast is of importance in two ways: first, ABC proteins can confer drug resistance on pathogenic fungi such as Candida spp., Aspergillus spp. or Cryptococcus neoformans; secondly, the well-established genetic, biochemical and cell biological tractability of Saccharomyces cerevisiae makes it an ideal tool to study basic mechanisms of drug transport by ABC proteins. In the past, knowledge from yeast has complemented work on human ABC transporters involved in anticancer drug resistance or genetic diseases. Interestingly, increasing evidence available from yeast and other organisms suggests that ABC proteins play a physiological role in membrane homoeostasis and lipid distribution, although this is being intensely debated in the literature.  相似文献   

6.
7.
Despite continuous improvements in therapeutic protocols, cancer-related mortality is still one of the main problems facing public health. The main cause of treatment failure is multi-drug resistance (MDR: simultaneous insensitivity to different anti-cancer agents), the underlying molecular and biological mechanisms of which include the activity of ATP binding cassette (ABC) proteins and drug compartmentalisation in cell organelles. We investigated the expression of the main ABC proteins and the role of cytoplasmic vacuoles in the MDR of six hepatocellular carcinoma (HCC) cell lines, and confirmed the accumulation of the yellow anti-cancer drug sunitinib in giant (four lines) and small cytoplasmic vacuoles of lysosomal origin (two lines). ABC expression analyses showed that the main ABC protein harboured by all of the cell lines was PGP, whose expression was not limited to the cell membrane but was also found on lysosomes. MTT assays showed that the cell lines with giant lysosomes were more resistant to sorafenib treatment than those with small lysosomes (p<0.01), and that verapamil incubation can revert this resistance, especially if it is administered after drug pre-incubation. The findings of this study demonstrate the involvement of PGP-positive lysosomes in drug sequestration and MDR in HCC cell lines. The possibility of modulating this mechanism using PGP inhibitors could lead to the development of new targeted strategies to enhance HCC treatment.  相似文献   

8.
ATP-binding cassette (ABC) transporters belong to one of the largest protein families that either import or export a wide spectrum of different substrates. Certain members of this superfamily have been implicated in multidrug resistance in various types of cancer as well as in pathogenic microorganisms. The role of ABC proteins in parasitic multidrug resistance becomes increasingly evident. However, studies on ABC transporters in helminths have been limited to MDR1 and MRP orthologues. In the present study, we reported, for the first time, the expression and localization of ABC proteins including orthologues of MDR1, MRP1, BCRP, and BSEP in the giant liver fluke Fasciola gigantica. Furthermore, the functional activities of these ABC transporters were characterized in isolated fluke cells using a fluorescent substrate, rhodamine. The results revealed the inhibition of rhodamine efflux by cyclosporin A, a potent inhibitor of ABC transporters. Interestingly, our data suggested that these proteins might play a role in the export of bile salts, in particular, taurocholate. Although, we did not observe any substantial changes in rhodamine transport in the presence of anthelmintics under experimental conditions, however, our findings altogether shed light on the possible involvement of several members of ABC proteins in the mechanism of drug resistance as well as detoxification process in helminths to survive inside their hosts.  相似文献   

9.
ABC转运蛋白结构及在植物病原真菌中的功能研究进展   总被引:1,自引:0,他引:1  
ABC (ATP-binding cassette)转运蛋白是最大的膜转运蛋白超家族之一,其主要功能是利用ATP水解产生的能量将底物进行逆浓度梯度运输.所有生物体都含有大量ABC蛋白. ABC蛋白位于细胞的不同空间,如细胞膜、液泡、线粒体和过氧化物酶体.通常,ABC转运蛋白由跨膜结构域(TMD)和核苷酸结合结构域(NBD)组成,分别与底物和ATP结合.NBD执行与ATP结合和水解,是ABC转运蛋白的动力引擎,TMD识别特异性配体.大多数ABC转运蛋白最初是通过研究生物体耐药性而被发现的,包括多效耐药(PDR)和多药耐药(MDR).本文对ABC转运蛋白的结构及作用机制,以及植物病原真菌中ABC转运蛋白功能的研究进展进行综述.  相似文献   

10.
Genes of multidrug resistance in haematological malignancies   总被引:1,自引:1,他引:1  
Since the early 1970s, multiple drug resistance has been known to exist in cancer cells and is thought to be attributable to a membrane-bound, energy-dependent pump protein (P-glycoprotein [P-gp]) capable of extruding various related and unrelated chemotherapeutic drugs. The development of refractory disease in haematological malignancies is frequently associated with the expression of one or several multidrug resistance (MDR) genes. MDR1, multidrug resistance-associated protein (MRP) and lung-resistance protein (LRP) have been identified as important adverse prognostic factors. Recently it has become possible to reverse clinical MDR by blocking P-gp-mediated drug efflux. The potential relevance of these reversal agents of MDR as well as the potential new approaches to treat the refractory disease are discussed in this article. In addition, an array of different molecules and mechanisms by which resistant cells can escape the cytotoxic effect of anticancer drugs has now been identified. These molecules and mechanisms include apoptosis-related proteins and drug inactivation enzymes. Resistance to chemotherapy is believed to cause treatment failure in more than 50% patients. Clearly, if drug resistance could be overcome, the impact on survival would be highly significant. This review focuses on molecular mechanism of drug resistance in haematological malignancies with emphasis on molecules involved in MDR. In addition, it brings the survey of methods involved in determination of MDR, in particular P-gp/MDR1, MRP and LRP.  相似文献   

11.
Resistance to therapeutic treatment is the major obstacle to advances in the successful management of pancreatic cancer. To characterize chromosomal alterations associated with different phenotypes of acquired multidrug resistance (MDR) and thermoresistance, comparative genomic hybridization (CGH) was applied to compare human pancreatic carcinoma-derived cells. This panel of cell lines consists of the parental, drug- and thermosensitive pancreatic carcinoma cell line EPP85 - 181P, its atypical MDR variant EPP85-181RNOV, the classical MDR subline EPP85-181RDB, and their thermoresistant counterparts EPP85-181P-TR, EPP85-181RNOV-TR, and EPP85 - 181RDB-TR, respectively. CGH using genomic DNA prepared from these cell lines as probes successfully identified genomic gains and/or losses in chromosomal regions encoding putative genes associated with drug resistance and/or thermoresistance. These genes included 23 members of the family of ABC transporters, 27 members of the family of cytochrome P450 (CYP) monooxygenases, various molecular chaperones, DNA repair enzymes, and factors involved in the regulation of cell cycle and apoptosis. The importance of these cell variant-specific genomic imbalances in the development of MDR and thermoresistance is discussed and remains to be elucidated.  相似文献   

12.
The completion of a number of nematode genomes has provided significant information on ABC systems in these organisms. Nematodes have more ABC systems genes and greater diversity than do mammalian species. Class 1 and class 2 ABC systems, more commonly known as ABC transporters, are present. As in other organisms, nematode ABC systems are characterized by a highly conserved ATP-binding domain (ABC_2) and a less conserved transmembrane domain (ABC_TM1/TM1F). Studies of drug resistance in nematodes have suggested that ABC transporters are part of the resistance mechanism. Evidence in support of this has been obtained from genetic studies where an association between anthelmintic selection and ABC transporters was shown by comparisons between unselected and drug selected, or resistant, populations of parasitic nematodes. In drug resistant populations, genetic polymorphism and diversity, genotype patterns, and linkage disequilibrium were disrupted. Multidrug resistance (MDR) reversing agents that inhibit ABC function improve efficacy in sensitive nematode populations and restore sensitivity in resistant populations. Similar to the situation in clinical oncology, overexpression of ABC systems occurs in drug resistant and sensitive populations following drug exposure, particularly those in the P-glycoprotein (PGP) subfamily. Deletion or disruption of ABC genes, particularly PGP and the multidrug resistance associated protein (MRP), increases sensitivity to some drugs, particularly ivermectin. These studies provide evidence that ABC transporters play a role in drug action and resistance in nematodes.  相似文献   

13.
Multidrug resistance: a role for cholesterol efflux pathways?   总被引:8,自引:0,他引:8  
Multidrug resistance (MDR) severely impairs the efficacy of cancer chemotherapy. Several protein transporters that mediate drug export have been identified, but additional adaptations appear to be necessary for full-fledged drug resistance. The cell surface density of caveolae and the expression of the caveolar coat protein caveolin are dramatically increased in MDR cancer cells. Acquisition of MDR might thus be accompanied by upregulation of caveolin-dependent cholesterol efflux pathways, raising the possibility that these same pathways are utilized for delivering drugs from intracellular compartments to the plasma membrane, where drugs can be extruded from the cells by drug efflux ATPases. The upregulation of caveolin mandates a phenotypic change of MDR cells in terms of their cholesterol homeostasis and is accompanied by loss of important features of the transformed phenotype of MDR cancer cells.  相似文献   

14.
Schistosomiasis, a neglected tropical disease affecting hundreds of millions, is caused by parasitic flatworms of the genus Schistosoma. Treatment and control of schistosomiasis relies almost exclusively on a single drug, praziquantel (PZQ), a dangerous situation for a disease of this magnitude. Though PZQ is highly effective overall, it has drawbacks, and reports of worms showing PZQ resistance, either induced in the laboratory or isolated from the field, are disconcerting. Multidrug transporters underlie multidrug resistance (MDR), a phenomenon in which resistance to a single drug is accompanied by unexpected cross-resistance to several structurally unrelated compounds. Some of the best studied multidrug transporters are members of the ancient and very large ATP-binding cassette (ABC) superfamily of efflux transporters. ABC multidrug transporters such as P-glycoprotein (Pgp; ABCB1) are also associated with drug resistance in parasites, including helminths such as schistosomes. In addition to their association with drug resistance, however, ABC transporters also function in a wide variety of physiological processes in metazoans. In this review, we examine recent studies that help define the role of schistosome ABC transporters in regulating drug susceptibility, and in normal schistosome physiology, including reproduction and excretory activity. We postulate that schistosome ABC transporters could be useful targets for compounds that enhance the effectiveness of current therapeutics as well as for agents that act as antischistosomals on their own.  相似文献   

15.
Fluconazole is one of the most useful drugs in the treatment of fungal systemic infections which frequently affect non immunocompetent individuals. However, the emergence of resistant strains in recent years may severely limit its usefulness in future. Although there are several described mechanisms involved in resistance to azoles, recent genetic studies demonstrate the role of specific genes in clinical resistance. Currently, the best characterized are the MDR1 and CDR1 genes, which code members of the MFS or ABC family of drug transporters, respectively. These proteins respond to the membrane potential (MFS) or hydrolyse ATP (ABC) thus promoting drug efflux and therefore reducing its intracellular accumulation. It has been shown that the mRNA from these genes is frequently increased in some Candida albicans resistant strains from patients receiving long term azole treatment. The development of molecular genetic tools in C. albicans is allowing characterization of their role in this and other important processes in the fungal cell.  相似文献   

16.
The development of MDR (multidrug resistance) in yeast is due to a number of mechanisms. The most documented mechanism is enhanced extrusion of drugs mediated by efflux pump proteins belonging to either the ABC (ATP-binding cassette) superfamily or MFS (major facilitator superfamily). These drug-efflux pump proteins are localized on the plasma membrane, and the milieu therein affects their proper functioning. Several recent studies demonstrate that fluctuations in membrane lipid composition affect the localization and proper functioning of the MDR efflux pump proteins. Interestingly, the efflux pumps of the ABC superfamily are particularly susceptible to imbalances in membrane-raft lipid constituents. This review focuses on the importance of the membrane environment in functioning of the drug-efflux pumps and explores a correlation between MDR and membrane lipid homoeostasis.  相似文献   

17.
Mechanisms and strategies to overcome multiple drug resistance in cancer   总被引:10,自引:0,他引:10  
Ozben T 《FEBS letters》2006,580(12):2903-2909
One of the major problems in chemotherapy is multidrug resistance (MDR) against anticancer drugs. ATP-binding cassette (ABC) transporters are a family of proteins that mediate MDR via ATP-dependent drug efflux pumps. Many MDR inhibitors have been identified, but none of them have been proven clinically useful without side effects. Efforts continue to discover not toxic MDR inhibitors which lack pharmacokinetic interactions with anticancer drugs. Novel approaches have also been designed to inhibit or circumvent MDR. In this review, the structure and function of ABC transporters and development of MDR inhibitors are described briefly including various approaches to suppress MDR mechanisms.  相似文献   

18.
Transport ATPases can be lumped into four distinct types, P, F, V, and ABC, with the first three designated 20 years ago (Pedersen, P.L. and Carafoli, E., Trends Biochem. Sci. 12, 146–150, 1987) and the ABC type included more recently. The mini-reviews (>20) that comprise this volume of the Journal of Bioenergetics and Biomembranes describe work presented at the 2007 FASEB Conference (6th) on Transport ATPases (Kathleen Sweadner, Chair; Rajini Rao, Co-Chair). Since these conferences began in 1997, the “transport ATPase field” has seen tremendous progress. Advances include a much better understanding of the structure, mechanism, and regulation of each of the four major ATPase types as well as their physiological and medical relevance. In fact, the transport ATPase field has entered a new era in which work on these enzymes is likely to contribute to new therapies for multiple diseases that affect both people and animals. Among these are cancer and heart disease, mitochondrial diseases, osteoporosis, macromolecular degeneration, immune deficiency, cystic fibrosis, diabetes, ulcers, nephro-toxicity, hearing loss, skin disorders, lupus, and malaria. In addition, as several members of the transport ATPase family include those involved in drug resistance their study may help alleviate this recurring problem in drug development. Finally, the transport ATPase field is also paving the way for nanotechnology focused on nano-motors with work on the F-type ATPases (F0F1) leading the way. These ATPases driven in reverse by a proton gradient have the capacity to interconvert electrochemical energy into mechanical energy and finally into chemical energy conserved in the terminal bond of ATP. In mammalian mitochondria these events occur on a larger complex or “nano-machine” called the “ATP synthasome” that consists of the ATP synthase in complex formation with carriers for Pi and ADP/ATP.  相似文献   

19.
BACKGROUND: The development of hepatocellular carcinoma (HCC) is a frequent event during the natural history of cirrhosis. Effective treatment is, however, hampered by drug resistance related to the expression of multidrug resistance (MDR) proteins belonging to the ABC family transporters. Studying expression of genes coding for these proteins may help to explain the potential sensitivity of HCC to chemotherapy. MATERIAL AND METHODS: The expression of MRP1, MRP2, MRP3, MDR1, and MDR3 was investigated by quantitative RT-PCR analyses in paraffin-embedded tissues obtained from 9 cases of HCC, 16 cases of cirrhosis, 10 cases of chronic extrahepatic cholestasis, and 16 cases of normal liver. In HCC cases, gene expression was assessed both in neoplastic and perineoplastic tissue after microscopically assisted microdissection. RESULTS: MRP1 was significantly and similarly overexpressed in HCC and perineoplastic tissue. MRP2 and MDR1 were also increased in HCC, but the level of expression did not correlate with that of perineoplastic tissue. The level of expression was either reduced or normal in cirrhotic liver and during chronic cholestasis. Expression of MDR3 was unchanged in all conditions investigated. CONCLUSIONS: The genetic expression of multi-drug resistance proteins, in particular MRP1, MRP2, and MDR1, is increased during HCC. In the case of MRP1, the extent of expression is similar in neoplastic and perineoplastic tissue, but this is not the case for MRP2 and MDR1. The assessment of ABC protein expression pattern may provide important information for the diagnosis and treatment of HCC.  相似文献   

20.
In the parallel paper, we developed a property to characterize drug efflux pumps, i.e. the reduced relative resistance (RRR). Using this RRR, we here investigate whether the observed diversity in human multidrug resistance (MDR) phenotypes might be due to variable levels of P-glycoprotein encoded by MDR1. We analyzed resistance phenotypes of various human cell lines in which either one, or both, classical human multidrug resistance genes, MDR1 and MDR3, are overexpressed. In addition, RRR values were calculated for MDR phenotypes presented in the literature. The results suggest that more than a single mechanism is required to account for the observed phenotypic diversity of classical multidrug resistance. This diversity is only partly due to differences in plasma membrane permeabilities between cell line families. It is discussed whether the alternative MDR phenotypes might be MDR1 phenotypes modified by other factors that do not themselves cause MDR. The method we here apply may also be useful for other nonspecific enzymes or pumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号