首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sung FJ  Chen JJ 《Plant physiology》1989,90(2):773-777
Lanceolate leaflet soybean (Glycine max L. Merrill) has been known to photosynthesize more CO2 per unit leaf area than normal leaflet soybean. The exact reason for this increase in photosynthetic rate is still unclear. The present study was undertaken to investigate the leaf photosynthetic rate and other physiological traits in relation to chloroplast of lanceolate leaflet soybean. Ontogenic changes in apparent photosynthesis (AP) were related primarily to variations in the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) per unit leaf area, and only secondarily to difference in specific activity of the said enzyme. Moreover, lanceolate leaflet consistently maintained a higher leaf AP, higher Rubisco activity, and more chloroplasts per unit leaf area basis than did normal leaflet soybean throughout leaf ontogeny. However, lanceolate soybean tended to have lower AP and Rubisco activity on a chloroplast basis. The superiority of leaf AP and other leaf physiological traits, expressed on a leaf area basis, in lanceolate leaflet soybean is associated with a corresponding increase in chloroplast number.  相似文献   

2.
It has long been held that the low photosynthetic rates (A) of coffee leaves are largely associated with diffusive constraints to photosynthesis. However, the relative limitations of the stomata and mesophyll to the overall diffusional constraints to photosynthesis, as well as the coordination of leaf hydraulics with photosynthetic limitations, remain to be fully elucidated in coffee. Whether the low actual A under ambient CO2 concentrations is associated with the kinetic properties of Rubisco and high (photo)respiration rates also remains elusive. Here, we provide a holistic analysis to understand the causes associated with low A by measuring a variety of key anatomical/hydraulic and photosynthetic traits in sun- and shade-grown coffee plants. We demonstrate that leaf hydraulic architecture imposes a major constraint on the maximisation of the photosynthetic gas exchange of coffee leaves. Regardless of the light treatments, A was mainly limited by stomatal factors followed by similar limitations associated with the mesophyll and biochemical constraints. No evidence of an inefficient Rubisco was found; rather, we propose that coffee Rubisco is well tuned for operating at low chloroplastic CO2 concentrations. Finally, we contend that large diffusive resistance should lead to large CO2 drawdown from the intercellular airspaces to the sites of carboxylation, thus favouring the occurrence of relatively high photorespiration rates, which ultimately leads to further limitations to A.  相似文献   

3.
The mechanisms responsible for photosynthetic acclimation are not well understood, effectively limiting predictability under future conditions. Least‐cost optimality theory can be used to predict the acclimation of photosynthetic capacity based on the assumption that plants maximize carbon uptake while minimizing the associated costs. Here, we use this theory as a null model in combination with multiple datasets of C3 plant photosynthetic traits to elucidate the mechanisms underlying photosynthetic acclimation to elevated temperature and carbon dioxide (CO2). The model‐data comparison showed that leaves decrease the ratio of the maximum rate of electron transport to the maximum rate of Rubisco carboxylation (Jmax/Vcmax) under higher temperatures. The comparison also indicated that resources used for Rubisco and electron transport are reduced under both elevated temperature and CO2. Finally, our analysis suggested that plants underinvest in electron transport relative to carboxylation under elevated CO2, limiting potential leaf‐level photosynthesis under future CO2 concentrations. Altogether, our results show that acclimation to temperature and CO2 is primarily related to resource conservation at the leaf level. Under future, warmer, high CO2 conditions, plants are therefore likely to use less nutrients for leaf‐level photosynthesis, which may impact whole‐plant to ecosystem functioning.  相似文献   

4.
In the past decade, various strategies to improve photosynthesis and crop yield, such as leaf morphology, light interception and use efficiency, biochemistry of light reactions, stomatal conductance, carboxylation efficiency, and source to sink regulation, have been discussed at length. Leaf morphology and physiology are tightly coupled to light capturing efficiency, gas exchange capacity, and temperature regulation. However, apart from the photoprotective mechanism of photosystem-II (PSII), i.e. non-photochemical quenching, very low genetic variation in the components of light reactions has been observed in plants. In the last decade, biochemistry-based enhancement of carboxylation efficiency that improves photosynthesis in plants was one of the potential strategies for improving plant biomass production. Enhancement of activation of the ubiquitous enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) by Rubisco activase may be another potential strategy for improving a photosynthesis-driven increase in crop yield. Rubisco activase modifies the conformation of the active center in Rubisco by removing tightly bound inhibitors, thereby contributing to enzyme activation and rapid carboxylation. Thermophilic cyanobacteria are oxygenic photosynthetic bacteria that thrive in high-temperature environments. This critical review discusses the prospects for and the potential of engineering Rubisco activase from thermophilic cyanobacteria into temperature-sensitive plants, to increase the threshold temperature and survival of these plants in arid regions.  相似文献   

5.
Fertilizer N availability impacts photosynthesis and crop performance, although cause–effect relationships are not well established, especially for field-grown plants. Our objective was to determine the relationship between N supply and photosynthetic capacity estimated by leaf area index (LAI) and single leaf photosynthesis using genetically diverse field-grown maize (Zea mays L.) hybrids. We compared a high yield potential commercial hybrid (FR1064 x LH185) and an experimental hybrid (FR1064 x IHP) with low yield potential but exceptionally high grain protein concentration. Plant biomass and physiological traits were measured at tassel emergence (VT) and at the grain milk stage (R3) to assess the effects of N supply on photosynthetic source capacity and N uptake, and grain yield and grain N were measured at maturity. Grain yield of FR1064 x LH185 was much greater than FR1064 x IHP even though plant biomass and LAI were larger for FR1064 x IHP, and single leaf photosynthesis was similar for both hybrids. Although photosynthetic capacity was not related to hybrid differences in productivity, increasing N supply led to proportional increases in grain yield, plant biomass, LAI, photosynthesis, and Rubisco and PEP carboxylase activities for both hybrids. Thus, a positive relationship between photosynthetic capacity and yield was revealed by hybrid response to N supply, and the relationship was similar for hybrids with a marked difference in yield potential. For both hybrids the N response of single leaf CER and initial Rubisco activity was negative when expressed per unit of leaf N. In contrast, PEP carboxylase activity per unit leaf N increased in response to N availability, indicating that PEP carboxylase served as a reservoir for excess N accumulation in field-grown maize leaves. The correlation between CER and initial Rubisco activity was highly significant when expressed on a leaf area or a total leaf basis. The results suggest that regardless of genotypic yield potential, maize CER, and potentially grain yield, could be improved by increasing the partitioning of N into Rubisco.  相似文献   

6.
7.
以弱光敏感型番茄品种‘基尔斯’为试验材料,采用营养液栽培,研究了外源24-表油菜素内酯对弱光胁迫下番茄幼苗叶片形态和光合特性的影响.结果表明:弱光胁迫下番茄幼苗叶片形态产生适应性变化,叶面积、比叶面积、茎叶夹角、茎叶垂角、垂度均显著提高,而叶片干质量显著降低;最大净光合速率、表观量子效率、暗呼吸速率、羧化效率、Rubisco大亚基含量均显著降低,而光补偿点和CO2补偿点显著升高.弱光胁迫下叶面喷施24-表油菜素内酯后,叶面积、叶片干质量、茎叶夹角、茎叶垂角分别增加14.1%、57.1%、12.3%和7.7%,比叶面积、垂度分别减小30.5%和10.6%;表观量子效率、暗呼吸速率、羧化效率分别提高20.4%、17.9%和9.3%,光补偿点、CO2补偿点分别降低21.9%和4.3%,差异均达到显著水平;Rubisco大亚基含量也显著升高.说明外源24 表油菜素内酯可以通过提高弱光下番茄幼苗叶片的表观量子效率、暗呼吸速率、羧化效率及Rubisco含量,降低光补偿点和CO2补偿点,并维持叶片形态的稳定性,来改善光合性能,有效缓解弱光胁迫对番茄幼苗的伤害.  相似文献   

8.
植物叶片最大羧化速率及其对环境因子响应的研究进展   总被引:3,自引:0,他引:3  
张彦敏  周广胜 《生态学报》2012,32(18):5907-5917
植物叶片最大羧化速率对环境因子的响应关系是陆地生态系统生产力与碳收支研究的重要方面。论文从测定方法、影响因子与模拟模型3方面综述了植物叶片最大羧化速率及其对环境因子响应研究的最新进展,指出现有的植物叶片最大羧化速率对单个环境因子的响应研究严重制约着陆地生态系统生产力的准确评估。为弄清植物叶片最大羧化速率对环境因子的综合响应关系,迫切需要加强以下研究:(1)植物叶片最大羧化速率的生物与环境控制机制研究;(2)生物与环境因子协同作用下的植物叶片最大羧化速率定量模拟及其尺度化研究;(3)植物叶片最大羧化速率的环境因子阈值研究。  相似文献   

9.
植物叶片最大羧化速率与叶氮含量关系的变异性   总被引:1,自引:0,他引:1       下载免费PDF全文
叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO2浓度、叶片氮含量等多个要素的控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方法却各不相同。该文汇总了1990-2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29-50.25 μmol CO2·g N-1·s-1。落叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO2浓度增加时, 由于叶片中Rubisco含量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO2浓度和供氮水平变化对二者关系的影响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理, 并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。  相似文献   

10.
Previous studies of photosynthetic acclimation to elevated CO2 have focused on the most recently expanded, sunlit leaves in the canopy. We examined acclimation in a vertical profile of leaves through a canopy of wheat (Triticum aestivum L.). The crop was grown at an elevated CO2 partial pressure of 55 Pa within a replicated field experiment using free-air CO2 enrichment. Gas exchange was used to estimate in vivo carboxylation capacity and the maximum rate of ribulose-1,5-bisphosphate-limited photosynthesis. Net photosynthetic CO2 uptake was measured for leaves in situ within the canopy. Leaf contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), light-harvesting-complex (LHC) proteins, and total N were determined. Elevated CO2 did not affect carboxylation capacity in the most recently expanded leaves but led to a decrease in lower, shaded leaves during grain development. Despite this acclimation, in situ photosynthetic CO2 uptake remained higher under elevated CO2. Acclimation at elevated CO2 was accompanied by decreases in both Rubisco and total leaf N contents and an increase in LHC content. Elevated CO2 led to a larger increase in LHC/Rubisco in lower canopy leaves than in the uppermost leaf. Acclimation of leaf photosynthesis to elevated CO2 therefore depended on both vertical position within the canopy and the developmental stage.  相似文献   

11.
《植物生态学报》2014,38(6):640
叶片最大羧化速率是表征植物光合能力的关键参数, 受到光照、温度、水分、CO2浓度、叶片氮含量等多个要素的控制。准确地模拟植物叶片最大羧化速率对环境因子的响应是预测未来植被生产力和碳循环过程的前提。目前大多数陆地碳循环过程模型以Farqhuar光合作用模型为基础模拟植物的光合作用, 关于植物叶片的最大羧化速率与叶氮含量关系的模拟方法却各不相同。该文汇总了1990-2013年国内外植物叶片光合速率观测研究文献中叶片最大羧化速率与叶氮含量的关系式及相关数据, 分析了叶片最大羧化速率与叶氮含量关系随不同植被功能型和时间的变化特征, 以及环境因子变化条件下最大羧化速率与叶氮含量关系的变化特征, 探讨了二者关系变异性的可能原因以及影响因子。结果表明: 1)不同功能型植物叶片的最大羧化速率和叶氮含量的关系存在较大差异, 二者线性关系式的斜率平均值变化范围为16.29-50.25 μmol CO2·g N-1·s-1。落叶植被叶片的最大羧化速率随叶氮含量的变化率和光合氮利用效率一般都高于常绿植被, 其变异主要源于植物的比叶重和叶片内部氮素分配的差异。2)叶片最大羧化速率随叶氮含量的变化存在季节和年际变异。在没有受到水分胁迫的年份中, 叶片最大羧化速率随叶氮含量变化的速率一般在春季或夏季最高, 其季节变异与比叶重和叶氮在Rubisco的分配比例的季节变化有关。受到干旱的影响, 叶片最大羧化速率随叶氮含量的变化率会升高。3)当大气CO2浓度增加时, 由于叶片中Rubisco含量的降低, 多年生针叶叶片最大羧化速率和叶氮关系斜率值会出现降低; 当供氮水平增加时, 叶片最大羧化速率和叶片氮含量均表现出增加趋势, 二者线性关系的斜率也相应增加。在此基础上, 该文指出在模拟叶片最大羧化速率与叶氮含量的关系时, 应考虑叶片比叶重和叶氮在Rubisco中的分配比例的季节变异、水分胁迫、大气CO2浓度和供氮水平变化对二者关系的影响。囿于数据的有限性, 今后应进一步加强多因子控制实验研究, 深入探讨叶片最大羧化速率与叶氮含量关系的变异性机理, 并获得更系统的观测数据, 以助生态系统过程模型的改进, 提高模型的模拟精度。  相似文献   

12.
三种高山杜鹃的光合生理生态研究   总被引:1,自引:0,他引:1  
对大白花杜鹃(Rhododendron decorum)、云南杜鹃(R.yunnanense)和红棕杜鹃(R.rubiginosum)进行了气体交换、叶片性状等研究,以期了解三种杜鹃的光合生理特性及其对环境的适应。结果表明,三种杜鹃的光饱和光合速率(Pmax)与RuBP饱和最大羧化速率(Vc max)、光饱和最大电子传递速率(Jmax)和气孔导度(gs)呈极显著正相关(P≤0.01),但仅Vc max存在显著的种间差异,说明三种杜鹃的光合能力主要受Vc max影响。叶氮含量、叶片氮在电子传递和在Rubisco中的分配均显著影响Vc max和Jmax。大白花杜鹃的LSP最低,LCP较高,对强光和弱光利用能力都不强,光适应范围较窄。云南杜鹃LCP最低,LSP和Pmax相对较高,对弱光或较强的光照均能利用,光照适应范围相对最广,光合适应能力最强;红棕杜鹃LSP和LCP均为最高,对强光环境的适应性最强。  相似文献   

13.
TL Pons 《Photosynthesis research》2012,113(1-3):207-219
The effect of temperature and irradiance during growth on photosynthetic traits of two accessions of Arabidopsis thaliana was investigated. Plants were grown at 10 and 22?°C, and at 50 and 300?μmol photons?m(-2)?s(-1) in a factorial design. As known from other cold-tolerant herbaceous species, growth of Arabidopsis at low temperature resulted in increases in photosynthetic capacity per unit leaf area and chlorophyll. Growth at high irradiance had a similar effect. However, the growth temperature and irradiance showed interacting effects for several capacity-related variables. Temperature effects on the ratio between electron transport capacity and carboxylation capacity were also different in low compared to high irradiance grown Arabidopsis. The carboxylation capacity per unit Rubisco, a measure for the in vivo Rubisco activity, was low in low irradiance grown plants but there was no clear growth temperature effect. The limitation of photosynthesis by the utilization of triose-phosphate in high temperature grown plants was less when grown at low compared to high irradiance. Several of these traits contribute to reduced efficiency of the utilization of resources for photosynthesis of Arabidopsis at low irradiance. The two accessions from contrasting climates showed remarkably similar capabilities of developmental acclimation to the two environmental factors. Hence, no evidence was found for photosynthetic adaptation of the photosynthetic apparatus to specific climatic conditions.  相似文献   

14.
Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at low than at high nitrate levels.  相似文献   

15.
Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.  相似文献   

16.
Recent evidence indicates that winter-red leaf phenotypes in the mastic tree (Pistacia lentiscus) are more vulnerable to chronic photoinhibition during the cold season relative to winter-green phenotypes occurring in the same high light environment. This was judged by limitations in the maximum quantum yield of photosystem II (PSII), found in previous studies. In this investigation, we asked whether corresponding limitations in leaf gas exchange and carboxylation reactions could also be manifested. During the cold (“red”) season, net CO2 assimilation rates (A) and stomatal conductances (gs) in the red phenotype were considerably lower than in the green phenotype, while leaf internal CO2 concentration (Ci) was higher. The differences were abolished in the “green” period of the year, the dry summer included. Analysis of A versus Ci curves indicated that CO2 assimilation during winter in the red phenotype was limited by Rubisco content and/or activity rather than stomatal conductance. Leaf nitrogen levels in the red phenotype were considerably lower during the red-leaf period. Consequently, we suggest that the inherently low leaf nitrogen levels are linked to the low net photosynthetic rates of the red plants through a decrease in Rubisco content. Accordingly, the reduced capacity of the carboxylation reactions to act as photosynthetic electron sinks may explain the corresponding loss of PSII photon trapping efficiency, which cannot be fully alleviated by the screening effect of the accumulated anthocyanins.  相似文献   

17.
Sink removal and leaf senescence in soybean : cultivar effects   总被引:6,自引:3,他引:3       下载免费PDF全文
Three cultivars of soybean (Glycine max [L.] Merr. cvs Harper, McCall, and Maple Amber) were grown in the field and kept continuously deflowered throughout the normal seedfill period. For all cultivars, deflowering led to delayed leaf abscission and a slower rate of chlorophyll loss. Compared to control plants, photosynthesis and ribulose 1,5-bis-phosphate carboxylase/oxygenase (Rubisco) level declined slightly faster for deflowered Harper, but for both McCall and Maple Amber, leaves of deflowered plants maintained approximately 20% of maximum photosynthesis and Rubisco level 1 month after control plants had senesced. Deflowering led to decreased leaf N remobilization and increased starch accumulation for all cultivars, but cultivars differed in that for McCall and Maple Amber, N and starch concentrations slowly but steadily declined over time whereas for Harper, N and starch concentrations remained essentially constant over time. SDS-PAGE of leaf proteins indicated that for all cultivars, deflowering led to accumulation of four polypeptides (80, 54, 29, and 27 kilodaltons). Western analysis using antisera prepared against the 29 and 27 kilodalton polypeptides verified that these polypeptides were the glycoproteins previously reported to accumulate in vacuoles of paraveinal mesophyll cells of depodded soybean plants. The results indicated that depending on the cultivar, sink removal can lead to either slightly faster or markedly slower loss of photosynthesis and Rubisco. This difference, however, was not associated with the ability to synthesize leaf storage proteins. For any particular cultivar, declines in chlorophyll, photosynthesis, and Rubisco were initiated at approximately the same time for control and deflowered plants. Thus, even though cultivars differed in rate of decay of photosynthetic rate and Rubisco level in response to sink removal, the initiation of leaf senescence was not influenced by presence or absence of developing fruits.  相似文献   

18.
Brassinosteroids (BRs) are a new group of plant growth substances that promote plant growth and productivity. We showed in this study that improved growth of cucumber (Cucumis sativus) plants after treatment with 24-epibrassinolide (EBR), an active BR, was associated with increased CO2 assimilation and quantum yield of PSII (ΦPSII). Treatment of brassinazole (Brz), a specific inhibitor for BR biosynthesis, reduced plant growth and at the same time decreased CO2 assimilation and ΦPSII. Thus, the growth-promoting activity of BRs can be, at least partly, attributed to enhanced plant photosynthesis. To understand how BRs enhance photosynthesis, we have analyzed the effects of EBR and Brz on a number of photosynthetic parameters and their affecting factors, including the contents and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Northern and Western blotting demonstrated that EBR upregulated, while Brz downregulated, the expressions of rbcL, rbcS and other photosynthetic genes. In addition, EBR had a positive effect on the activation of Rubisco based on increased maximum Rubisco carboxylation rates (V c,max), total Rubisco activity and, to a greater extent, initial Rubisco activity. The accumulation patterns of Rubisco activase (RCA) based on immunogold-labeling experiments suggested a role of RCA in BR-regulated activation state of Rubisco. Enhanced expression of genes encoding other Calvin cycle genes after EBR treatment may also play a positive role in RuBP regeneration (J max), thereby increasing maximum carboxylation rate of Rubisco (V c,max). Thus, BRs promote photosynthesis and growth by positively regulating synthesis and activation of a variety of photosynthetic enzymes including Rubisco in cucumber.  相似文献   

19.
The objectives of this study were to determine the effects of UV-B radiation and atmospheric carbon dioxide concentrations ([CO(2)]) on leaf senescence of cotton by measuring leaf photosynthesis and chlorophyll content and to identify changes in leaf hyperspectral reflectance occurring due to senescence and UV-B radiation. Plants were grown in controlled-environment growth chambers at two [CO(2)] (360 and 720 micro mol mol(-1)) and three levels of UV-B radiation (0, 7.7 and 15.1 kJ m(-2) day(-1)). Photosynthesis, chlorophyll, carotenoids and phenolic compounds along with leaf hyperspectral reflectance were measured on three leaves aged 12, 21 and 30 days in each of the treatments. No interaction was detected between [CO(2)] and UV-B for any of the measured parameters. Significant interactions were observed between UV-B and leaf age for photosynthesis and stomatal conductance. Elevated [CO(2)] enhanced leaf photosynthesis by 32%. On exposure to 0, 7.7 and 15.1 kJ of UV-B, the photosynthetic rates of 30-day-old leaves compared with 12-day-old leaves were reduced by 52, 76 and 86%, respectively. Chlorophyll pigments were not affected by leaf age at UV-B radiation of 0 and 7.7 kJ, but UV-B of 15.1 kJ reduced the chlorophylls by 20, 60 and 80% in 12, 21 and 30-day-old leaves, respectively. The hyperspectral reflectance between 726 and 1142 nm showed interaction for UV-B radiation and leaf age. In cotton, leaf photosynthesis can be used as an indicator of leaf senescence, as it is more sensitive than photosynthetic pigments on exposure to UV-B radiation. This study revealed that, cotton leaves senesced early on exposure to UV-B radiation as indicated by leaf photosynthesis, and leaf hyperspectral reflectance can be used to detect changes caused by UV-B and leaf ageing.  相似文献   

20.
High photosynthetic efficiency intrinsically demands tight coordination between traits related to CO2 diffusion capacity and leaf biochemistry. Although this coordination constitutes the basis of existing mathematical models of leaf photosynthesis, it has been barely explored among closely related species, which could reveal rapid adaptation clues in the recent past. With this aim, we characterized the photosynthetic capacity of 12 species of Limonium, possessing contrasting Rubisco catalytic properties, grown under optimal (WW) and extreme drought conditions (WD). The availability of CO2 at the site of carboxylation (Cc) determined the photosynthetic capacity of Limonium under WD, while both diffusional and biochemical components governed the photosynthetic performance under WW. The variation in the in vivo caboxylation efficiency correlated with both the concentration of active Rubisco sites and the in vitro‐based properties of Rubisco, such as the maximum carboxylase turnover rate (kcatc) and the Michaelis–Menten constant for CO2 (Kc). Notably, the results confirmed the hypothesis of coordination between the CO2 offer and demand functions of photosynthesis: those Limonium species with high total leaf conductance to CO2 have evolved towards increased velocity (i.e. higher kcatc), at the penalty of lower affinity for CO2 (i.e. lower specificity factor, Sc/o).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号