首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Newcastle disease is one of the most important infectious diseases of poultry, caused by Newcastle disease virus (NDV). This virus is distributed worldwide and it can cause severe economic losses in the poultry industry due to recurring outbreaks in vaccinated and unvaccinated flocks. Protection against NDV in chickens has been associated with development of humoral response. Although hemagglutination inhibition (HI) assay and ELISA do not corroborate the presence of neutralizing antibodies (nAbs); they are used to measure protection and immune response against NDV.

Methods

In this study, we established a system to recover a recombinant NDV (rLS1) from a cloned cDNA, which is able to accept exogenous genes in desired positions. An enhanced green fluorescent protein (eGFP) gene was engineered in the first position of the NDV genome and we generated a recombinant NDV carrying eGFP. This NDV- eGFP reporter virus was used to develop an eGFP-based neutralization test (eGFP-NT), in which nAbs titers were expressed as the reciprocal of the highest dilution that expressed the eGFP.

Results

The eGFP-NT gave conclusive results in 24 h without using any additional staining procedure. A total of 57 serum samples were assayed by conventional neutralization (NT) and eGFP-NT. Additionally, HI and a commercial ELISA kit were evaluated with the same set of samples. Although HI (R 2?=?0.816) and ELISA (R 2?=?0.791) showed substantial correlation with conventional NT, eGFP-NT showed higher correlation (R 2?=?0.994), indicating that eGFP-NT is more accurate method to quantify nAbs.

Conclusions

Overall, the neutralization test developed here is a simple, rapid and reliable method for quantitation of NDV specific nAbs. It is suitable for vaccine studies and diagnostics.
  相似文献   

3.
We previously showed that HIV-1 subtype C viruses elicit potent but highly type-specific neutralizing antibodies (nAb) within the first year of infection. In order to determine the specificity and evolution of these autologous nAbs, we examined neutralization escape in four individuals whose responses against the earliest envelope differed in magnitude and potency. Neutralization escape occurred in all participants, with later viruses showing decreased sensitivity to contemporaneous sera, although they retained sensitivity to new nAb responses. Early nAb responses were very restricted, occurring sequentially and targeting only two regions of the envelope. In V1V2, limited amino acid changes often involving indels or glycans, mediated partial or complete escape, with nAbs targeting the V1V2 region directly in 2 cases. The alpha-2 helix of C3 was also a nAb target, with neutralization escape associated with changes to positively charged residues. In one individual, relatively high titers of anti-C3 nAbs were required to drive genetic escape, taking up to 7 weeks for the resistant variant to predominate. Thereafter titers waned but were still measurable. Development of this single anti-C3 nAb specificity was associated with a 7-fold drop in HIV-1 viral load and a 4-fold rebound as the escape mutation emerged. Overall, our data suggest the development of a very limited number of neutralizing antibody specificities during the early stages of HIV-1 subtype C infection, with temporal fluctuations in specificities as escape occurs. While the mechanism of neutralization escape appears to vary between individuals, the involvement of limited regions suggests there might be common vulnerabilities in the HIV-1 subtype C transmitted envelope.  相似文献   

4.
The World Health Organization (WHO) standard assay for determining antibody level is the rapid fluorescent focus inhibition test (RFFIT) and is used to determine the degree of immunity after vaccinatio...  相似文献   

5.
BackgroundZika virus (ZIKV), a mosquito-borne flavivirus, is a re-emerging virus that constitutes a public health threat due to its recent global spread, recurrent outbreaks, and infections that are associated with neurological abnormalities in developing fetuses and Guillain-Barré syndrome in adults. To date, there are no approved vaccines against ZIKV infection. Various preclinical and clinical development programs are currently ongoing in an effort to bring forward a vaccine for ZIKV.Methodology/Principle findingsWe have developed a ZIKV vaccine candidate based on Virus-Like-Particles (VLPs) produced in HEK293 mammalian cells using the prM (a precursor to M protein) and envelope (E) structural protein genes from ZIKV. Transient transfection of cells via plasmid and electroporation produced VLPs which were subsequently purified by column chromatography yielding approximately 2mg/L. Initially, immunogenicity and efficacy were evaluated in AG129 mice using a dose titration of VLP with and without Alhydrogel 2% (alum) adjuvant. We found that VLP with and without alum elicited ZIKV-specific serum neutralizing antibodies (nAbs) and that titers correlated with protection. A follow-up immunogenicity and efficacy study in rhesus macaques was performed using VLP formulated with alum. Multiple neutralization assay methods were performed on immune sera including a plaque reduction neutralization test, a microneutralization assay, and a Zika virus Renilla luciferase neutralization assay. All of these assays indicate that following immunization, VLP induces high titer nAbs which correlate with protection against ZIKV challenge.Conclusions/SignificanceThese studies confirm that ZIKV VLPs could be efficiently generated and purified. Upon VLP immunization, in both mice and NHPs, nAb was induced that correlate with protection against ZIKV challenge. These studies support translational efforts in developing a ZIKV VLP vaccine for evaluation in human clinical trials.  相似文献   

6.
The relative potencies of a number of rabies immunoglobulin preparations were estimated in an international collaborative study comprising eight laboratories in five countries. Two assay methods were used: a virus neutralization test in mice (MNT) and a virus neutralization test in cell culture (RFFIT). Differences between the results obtained by the two methods, which have been reported, could not be generally corroborated. The results indicate that in some laboratories the MNT cause difficulties and give results different from those obtained by RFFIT. In other laboratories such difficulties are not encountered. The results seem to indicate that the RFFIT is a more reliable method than the MNT.  相似文献   

7.
The European Pharmacopoeia proposes two methods for potency determination of inactivated rabies vaccines for veterinary use: The first one is a classical mouse challenge test, which is imprecise, time-consuming, and causes severe distress to the test animals. Alternatively, the potency may be determined serologically by measuring the neutralizing antibody titers induced after vaccination of mice by using a rapid fluorescent focus inhibition test (RFFIT). Although this method is faster and less painful for the animals, it is not widely used yet, and only little data exist concerning the comparability of both methods.We have therefore performed a comparative study, in which we demonstrated a good correlation between the challenge test results and the mean titers determined by RFFIT. Furthermore, all vaccine batches failing the challenge test were also recognized as insufficient in the serological assay. This publication further describes the influence of different vaccine administration routes on the resulting antibody titers, and it proposes various modifications to the serological assay protocol which could improve its overall practicability. Finally, we recommend that the serological assay be used for the potency testing of inactivated rabies vaccines.  相似文献   

8.
《Research in virology》1990,141(5):571-581
A reduced panel of 4 anti-nucleocapsid monoclonal antibodies (mAb) was set up to distinguish viruses of terrestrial mammal origin from viruses of bat origin in Europe. Four additional mAb were necessary to identify each one of the four serotypes of lyssavirus. These 8 mAb were selected out of 25 mAb secreted by hybridomas obtained form mice immunized with either serotype 1 lyssavirus (rabies virus PV4) or serotype 3 lyssavirus (Mokola). They were screened with 32 viruses representative of the four lyssavirus serotypes and the two types of European bat lyssavirus. The panel was tested by immunofluorescence assay with 25 cell-culture-adapted European wildlife isolates and in routine rabies identification with 65 rabid animal brain smears, Two isolates from Eptesicus serotinus in France were identified as European bat lyssavirus 1 with the reduced panel.  相似文献   

9.
Antibodies play a central role in prophylaxis against many infectious agents. While neutralization is a primary function of antibodies, the Fc- and complement-dependent activities of these multifunctional proteins may also be critical in their ability to provide protection against most viruses. Protection against viral pathogens in vivo is complex, and while virus neutralization—the ability of antibody to inactivate virus infectivity, often measured in vitro—is important, it is often only a partial contributor in protection. The rapid fluorescent focus inhibition test (RFFIT) remains the “gold standard” assay to measure rabies virus–neutralizing antibodies. In addition to neutralization, the rabies-specific antigen-binding activity of antibodies may be measured through enzyme-linked immunosorbent assays (ELISAs), as well as other available methods. For any disease, in selecting the appropriate assay(s) to use to assess antibody titers, assay validation and how they are interpreted are important considerations—but for a fatal disease like rabies, they are of paramount importance. The innate limitations of a one-dimensional laboratory test for rabies antibody measurement, as well as the validation of the method of choice, must be carefully considered in the selection of an assay method and for the interpretation of results that might be construed as a surrogate of protection.  相似文献   

10.
Levels of neutralizing antibody to lymphocytic choriomeningitis (LCM) virus in the sera of 66 infected persons were assayed by a rapid fluorescent focus-inhibition test (RFFIT). The test was more sensitive than the mouse-neutralization (MN) test and could be completed in less than 24 h. The RFFIT titers were compared with titers obtained by the indirect fluorescent-antibody (IFA) and complement-fixation (CF) tests. Neutralizing antibody detected by the RFFIT remained positive after IRA, CF and MN antibodies had disappeared. The RFFIT for detection of LCM antibody is specific and reproducible and seems especially useful for determining the incidence and epidemiology of LCM virus infections.  相似文献   

11.
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is continuously evolving, and this poses a major threat to antibody therapies and currently authorized Coronavirus Disease 2019 (COVID-19) vaccines. It is therefore of utmost importance to investigate and predict the putative mutations on the spike protein that confer immune evasion. Antibodies are key components of the human immune system’s response to SARS-CoV-2, and the spike protein is a prime target of neutralizing antibodies (nAbs) as it plays critical roles in host cell recognition, fusion, and virus entry. The potency of therapeutic antibodies and vaccines partly depends on how readily the virus can escape neutralization. Recent structural and functional studies have mapped the epitope landscape of nAbs on the spike protein, which illustrates the footprints of several nAbs and the site of escape mutations. In this review, we discuss (1) the emerging SARS-CoV-2 variants; (2) the structural basis for antibody-mediated neutralization of SARS-CoV-2 and nAb classification; and (3) identification of the RBD escape mutations for several antibodies that resist antibody binding and neutralization. These escape maps are a valuable tool to predict SARS-CoV-2 fitness, and in conjunction with the structures of the spike-nAb complex, they can be utilized to facilitate the rational design of escape-resistant antibody therapeutics and vaccines.  相似文献   

12.
The World Health Organization (WHO) standard assay for determining levels of the rabies virus neutralization antibody (RVNA) is the rapid fluorescent focus inhibition test (RFFIT), which is used to evaluate the immunity effect after vaccination against rabies. For RFFIT, CVS-11 was used as the challenge virus, BSR cells as the adapted cells, and WHO rabies immunoglobulin (WHO STD) as the reference serum in this study. With reference to WHO and Pasteur RFFIT procedures, a micro-RFFIT procedure adapted to our laboratory was produced, and its specificity and reproducibility were tested. We tested levels of RVNA in human serum samples after immunization with different human rabies vaccines (domestic purified Vero cell rabies vaccine (PVRV) and imported purified chick embryo cell vaccine (PCECV)) using different regimens (Zagreb regimen and Essen regimen). We analyzed the levels of RVNA, and compared the immune efficacy of domestic PVRV and imported PCECV using different immunization regimens. The results showed that the immune efficacy of domestic PVRV using the Zagreb regimen was as good as that of the imported PCECV, but virus antibodies were generated more rapidly with the Zagreb regimen than with the Essen regimen. The RFFIT procedure established in our laboratory will enhance the comprehensive detection ability of institutions involved in rabies surveillance in China.  相似文献   

13.
We previously reported the development of a neutralization assay system for evaluating Japanese Encephalitis Virus (JEV) neutralizing antibody (NAb) using pseudotyped-JEV (JEV-PV). JEV-PV-based neutralization assay offers several advantages compared with the current standard plaque-reduction neutralization test (PRNT), including simplicity, safety, and speed. To evaluate the suitability of the JEV-PV assay as new replacement neutralization assay, we compared its repeatability, reproducibility, specificity, and correlated its results with those obtained using the PRNT. These analyses showed a close correlation between the results obtained with the JEV-PV assay and the PRNT, using the 50% plaque reduction method as a standard for measuring NAb titers to JEV. The validation results met all analytical acceptance criteria. These results suggest that the JEV-PV assay could serve as a safe and simple method for measuring NAb titer against JEV and could be used as an alternative approach for assaying the potency of JEV neutralization.  相似文献   

14.
Levels of rabies virus neutralization antibody in sera from vaccinated dogs and cattle were either measured by mouse neutralization test (MNT) or by rapid fluorescent focus inhibition test (RFFIT), performed on CER monolayers. The two tests were compared for their ability to detect the 0.5 International Units/ml (I.U.) recommended by the World Health Organization (WHO) as the minimum response for proof of rabies immunization. A significant correlation was found between the two tests (n=211; r=0.9949 in dogs and 0.9307 in cows, p<0.001), good sensitivity (87.5%), specificity (94.7%) and agreement (96.6%) as well. RFFIT method standardized on CER cell system for neutralizing antibodies detection turns the diagnosis easier and less expensive, specially when a great number of samples must be tested from endemic areas as commonly found in Brazil.  相似文献   

15.
Wang X  Ren L  Tu Q  Wang J  Zhang Y  Li M  Liu R  Wang J 《Biosensors & bioelectronics》2011,26(7):3353-3360
Rabies, canine distemper, and canine parvovirus are common contagious viral diseases of dogs and many other carnivores, and pose a severe threat to the population dynamics of wild carnivores, as well as endangering carnivore conservation. However, clinical diagnosis of these diseases, especially canine distemper and canine parvovirus, is difficult because of the broad spectrum of symptoms that may be confused with other respiratory and enteric diseases of dogs. The most frequently used and proven techniques for diagnosing viral diseases include the conventional enzyme-linked immunosorbent assay (ELISA), rapid fluorescent focus inhibition test (RFFIT), mouse neutralisation test (MNT), and fluorescent antibody virus neutralization (FAVN) test. However, these methods still have some inherent limitations. In this study, a magnetic protein microbead-aided indirect fluoroimmunoassay was developed to detect canine virus specific antibodies, human rabies immunoglobulin, CDV McAbs, and CPV McAbs. In this assay, an avidin-biotin system was employed to combine magnetic microbeads and virus antigens (rabies virus, canine distemper virus, and canine parvovirus). Quantification of the targeted virus antibodies was analyzed through indirect fluoroimmunoassay using the specific antigen-antibody reaction, as well as their corresponding FITC-labeled detection antibodies (mouse anti-human IgG/FITC conjugate or rabbit anti-dog IgG/FITC conjugate). The results indicated that the fluorescence intensity increased when a higher concentration of the targeted analyte was used, but the control had almost no fluorescence, much like the conventional ELISA. For human rabies immunoglobulin, CDV McAbs, and CPV McAbs, the minimum detectable concentrations were 0.2 IU/mL, 0.3 ng/mL, and 0.5 ng/mL, respectively. All of these results indicate that this assay can be employed to determine the presence of canine virus specific antibodies. In addition, the method devised here can be utilized as a general protocol in other bacterial and viral marker analysis.  相似文献   

16.
Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.  相似文献   

17.

Background

Rabies is a fatal viral encephalitic disease that is caused by lyssaviruses which can affect all mammals, including human and bats. In Europe, bat rabies cases are attributed to five different lyssavirus species, the majority of rabid bats being attributed to European bat 1 lyssavirus (EBLV-1), circulating mainly in serotine bats (Eptesicus serotinus). In France, rabies in bats is under surveillance since 1989, with 77 positive cases reported between 1989 and 2016.

Case presentation

In the frame of the bat rabies surveillance, an unusual mortality of serotine bats was reported in 2009 in a village in North-East France. Six juvenile bats from an E. serotinus maternity colony counting ~200 individuals were found to be infected with EBLV-1. The active surveillance of the colony by capture sessions of bats from July to September 2009 showed a high detection rate of neutralising EBLV-1 antibodies (≈ 50%) in the colony. Moreover, one out of 111 animals tested was found to shed viable virus in saliva, while lyssavirus RNA was detected by RT-PCR for five individuals.

Conclusion

This study demonstrated that the lyssavirus infection in the serotine maternity colony was followed by a high rate of bat rabies immunity after circulation of the virus in the colony. The ratio of seropositive bats is probably indicative of an efficient virus transmission coupled to a rapid circulation of EBLV-1 in the colony.
  相似文献   

18.

Background

A vaccine is needed to control the spread of human immunodeficiency virus type 1 (HIV-1). An in vitro assay that can predict the protection induced by a vaccine would facilitate the development of such a vaccine. A potential candidate would be an assay to quantify neutralization of HIV-1.

Methods and Findings

We have used sera from rhesus macaques that have been immunized with HIV candidate vaccines and subsequently challenged with simian human immunodeficiency virus (SHIV). We compared neutralization assays with different formats. In experiments with the standardized and validated TZMbl assay, neutralizing antibody titers against homologous SHIVSF162P4 pseudovirus gave a variable correlation with reductions in plasma viremia levels. The target cells used in the assays are not just passive indicators of virus infection but are actively involved in the neutralization process. When replicating virus was used with GHOST cell assays, events during the absorption phase, as well as the incubation phase, determine the level of neutralization. Sera that are associated with protection have properties that are closest to the traditional concept of neutralization: the concentration of antibody present during the absorption phase has no effect on the inactivation rate. In GHOST assays, events during the absorption phase may inactivate a fixed number, rather than a proportion, of virus so that while complete neutralization can be obtained, it can only be found at low doses particularly with isolates that are relatively resistant to neutralization.

Conclusions

Two scenarios have the potential to predict protection by neutralizing antibodies at concentrations that can be induced by vaccination: antibodies that have properties close to the traditional concept of neutralization may protect against a range of challenge doses of neutralization sensitive HIV isolates; a window of opportunity also exists for protection against isolates that are more resistant to neutralization but only at low challenge doses.  相似文献   

19.
Butyrylcholinesterase (BChE) activity assay and inhibitor phenotyping can help to identify patients at risk of prolonged paralysis following the administration of neuromuscular blocking agents. The assay plays an important role in clinical chemistry as a good diagnostic marker for intoxication with pesticides and nerve agents. Furthermore, the assay is also commonly used for in vitro characterization of cholinesterases, their toxins and drugs. There is still lack of standardized procedure for measurement of BChE activity and many laboratories use different substrates at various concentrations. The purpose of this study was to validate the BChE activity assay to determine the best dilution of human serum and the most optimal concentration of substrates and inhibitors. Serum BChE activity was measured using modified Ellman’s method applicable for a microplate reader. We present our experience and new insights into the protocol for high-throughput routine assays of human plasma cholinesterase activities adapted to a microplate reader. During our routine assays used for the determination of BChE activity, we have observed that serum dilution factor influences the results obtained. We show that a 400-fold dilution of serum and 5mM S-butyrylthiocholine iodide can be successfully used for the accurate measurement of BChE activity in human serum. We also discuss usage of various concentrations of dibucaine and fluoride in BChE phenotyping. This study indicates that some factors of such a multicomponent clinical material like serum can influence kinetic parameters of the BChE. The observed inhibitory effect is dependent on serum dilution factor used in the assay.  相似文献   

20.
In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius'' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton''s bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号