首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All mammals have 50-100 μM mannose in their blood. However, the source of the dynamic pool of mannose in blood is unknown. Most of it is thought to be derived from glucose in the cells. We studied mannose uptake and release by various cell types. Interestingly, our results show that mannose taken up by the cells through transporters is handled differently from the mannose released within the cells due to glycan processing of protein-bound oligosaccharides. Although more than 95% of incoming mannose is catabolized, most of the mannose released by intracellular processing is expelled from the cells as free mannose predominantly via a nocodazole-sensitive sugar transporter. Under physiological conditions, incoming mannose is more accessible to hexokinase, whereas mannose released within the cells is protected from HK and therefore has a different fate. Our data also suggest that generation of free mannose due to the processing of glycoconjugates composed of glucose-derived mannose and its efflux from the cells can account for most of the mannose found in blood and its steady state maintenance.  相似文献   

2.
Synthetic monosaccharide derivatives (alpha-glucosyl, beta-glucosyl, alpha-mannosyl) and disaccharide derivatives (alpha-mannosyl-1,2-alpha-glucosyl, alpha-mannosyl-1,3-alpha-glucosyl, alpha-mannosyl-1,4-alpha-glucosyl, alpha-mannosyl-1,6-alpha-glucosyl) of diphosphomoraprenol were used as putative mannose acceptors in the biosynthesis of Escherichia coli O9 antigen. Membranes of E. coli O9 derived from the rfe mutant F 1357 were reconstituted with these compounds and then incubated with different concentrations of GDP-[14C]mannose. Of the monosaccharide derivatives tested, only alpha-glucodiphosphomoraprenol was a mannose acceptor and the only disaccharide derivative which accepted mannose was alpha-mannosyl-1,3-alpha-glucosyldiphosphomoraprenol. The alpha-glucosyl derivative accepted only one mannose unit at 4 microM GDP-[14C]mannose, and above 50 microM GDP-[14C]mannose about 25% of the product had a minimum size of about 30 mannose units. The alpha-mannosyl-1,3-alpha-glucosyl derivative was only a mannose acceptor at a GDP-[14C]mannose concentration of 50 microM and higher, and the product had a minimum size of about 30 mannose units. The results are discussed with respect to requirement of mannose acceptors.  相似文献   

3.
Carbohydrate-deficient glycoprotein syndrome type I (CDGS) is an inherited metabolic disorder with multisystemic abnormalities resulting from a failure to add entire N-linked oligosaccharide chains to many glycoproteins. Fibroblasts from these patients also abnormally glycosylate proteins, but this lesion is corrected by providing 250 μm mannose to the culture medium. This correction of protein glycosylation suggests that providing dietary mannose to elevate blood mannose concentrations might also remedy some of the underglycosylation observed in these patients. We find that ingested mannose is efficiently absorbed and increases blood mannose levels in both normal subjects and CDGS patients. Blood mannose levels increased in a dose-dependent fashion with increasing oral doses of mannose (0.07–0.21 g mannose/kg body weight). Peak blood mannose concentrations occurred at 1–2 h following ingestion and the clearance half-time was approximately 4 h. Doses of 0.1 g mannose/kg body weight given at 3-h intervals maintained blood mannose concentrations at levels 3- to 5-fold higher than the basal level in both normal controls (∼55 μm) and CDGS patients. No side effects were observed for this dosage regimen. These results establish the feasibility of using mannose as a potential therapeutic dietary supplement (nutraceutical) to treat CDGS patients.  相似文献   

4.
Glycoproteins terminating in mannose are recognized by receptors on macrophages. The mannose receptor is expressed by a variety of macrophages but expression is closely regulated. Activated macrophages, for example, express little mannose receptor activity. Kinetic and fractionation experiments suggest that cell surface mannose receptors recycle to and from an acidic, pre-lysosomal compartment. Preliminary evidence suggests that the mannose receptor is a large polypeptide and that it is structurally related to the mannose binding protein found in serum. The mannose receptor may, among other possibilities, regulate the extracellular levels of lysosomal hydrolases.  相似文献   

5.
When a derivatized oligosaccharide isolated from ovalbumin and containing 6 mannose residues was incubated with yeast membranes and GDP-mannose, two sets of products were obtained, a high molecular weight one containing about 25 mannose residues and a low molecular weight one consisting of compounds with 7, 8, and 9 mannose residues, respectively. When the low molecular weight products were reincubated with the yeast membranes and GDP-mannose, no further mannose incorporation was observed, showing that these compounds must be of the wrong structure as substrates for yeast glycan processing enzymes. The structures were investigated by 1H NMR spectroscopy. The high molecular weight products contained an outer chain of an average length of 18 1----6-linked mannose residues attached to a core structure made up of the original 6 mannose residues with one additional 1----2-linked mannose added. The low molecular weight product with 8 mannose residues was deduced to contain a terminal 1----6-linked mannose (on the 1----6 arm) substituted by mannose at the 2-position, and the ones with 7 and 9 mannose residues were identified as having an additional 1----3-linked mannose on the starting Man6 substrate and on the Man8 product, respectively. The results lend further support to the picture that the processing steps must occur in proper sequence for specific products to form.  相似文献   

6.
A membrane fraction from Saccharomyces cerevisiae as well as a mannosyltransferase purified therefrom was shown to catalyze the transfer of mannose from GDPmannose to retinyl phosphate. The product formed has chromatographic and chemical properties characteristic for retinylphosphate mannose. The enzyme requires divalent cations. Mg2+ is more effective than Mn2+ with an optimum concentration around 25 mM. Amphomycin at a concentration of 0.1 mg/ml inhibits the reaction to 50%. Glycosyl transfer was specific for mannose residues from GDPmannose and did not occur with dolichylphosphate mannose nor with UDP galactose; UDPglucose is a poor donor. Formation of retinylphosphate mannose is inhibited by dolichyl phosphate. This observation as well as similarities between retinylphosphate mannose and dolichylphosphate mannose synthesis in respect to ion requirement, inhibition by amphomycin are suggestive that both reactions are catalyzed by one and the same enzyme. In experiments studying the glycosyl donor specificity in the assembly of lipid-linked oligosaccharide intermediates involved in N-glycosylation of proteins, it could be demonstrated that retinylphosphate mannose can replace dolichylphosphate mannose in the final steps of mannosylation.  相似文献   

7.
D-mannose is an essential monosaccharide constituent of glycoproteins and glycolipids. However, it is unknown how plasma mannose is supplied. The aim of this study was to explore the source of plasma mannose. Oral administration of glucose resulted in a significant decrease of plasma mannose concentration after 20 min in fasted normal rats. However, in fasted type 2 diabetes model rats, plasma mannose concentrations that were higher compared with normal rats did not change after the administration of glucose. When insulin was administered intravenously to fed rats, it took longer for plasma mannose concentrations to decrease significantly in diabetic rats than in normal rats (20 and 5 min, respectively). Intravenous administration of epinephrine to fed normal rats increased the plasma mannose concentration, but this effect was negated by fasting or by administration of a glycogen phosphorylase inhibitor. Epinephrine increased mannose output from the perfused liver of fed rats, but this effect was negated in the presence of a glucose-6-phosphatase inhibitor. Epinephrine also increased the hepatic levels of hexose 6-phosphates, including mannose 6-phosphate. When either lactate alone or lactate plus alanine were administered as gluconeogenic substrates to fasted rats, the concentration of plasma mannose did not increase. When lactate was used to perfuse the liver of fasted rats, a decrease, rather than an increase, in mannose output was observed. These findings indicate that hepatic glycogen is a source of plasma mannose.  相似文献   

8.
Mannose for mammalian glycan biosynthesis can be imported directly from the medium, derived from glucose or salvaged from endogenous or external glycans. All pathways must generate mannose 6-phosphate, the activated form of mannose. Imported or salvaged mannose is directly phosphorylated by hexokinase, whereas fructose 6-phosphate from glucose is converted to mannose 6-phosphate by phosphomannose isomerase (PMI). Normally, PMI provides the majority of mannose for glycan synthesis. To assess the contribution of PMI-independent pathways, we used PMI-null fibroblasts to study N-glycosylation of DNase I, a highly sensitive indicator protein. In PMI-null cells, imported mannose and salvaged mannose make a significant contribution to N-glycosylation. When these cells were grown in mannose-free medium along with the mannosidase inhibitor, swainsonine, to block the salvage pathways, N-glycosylation of DNase I was almost completely eliminated. Adding approximately 13 microm mannose to the medium completely restored normal glycosylation. Treatment with bafilomycin A(1), an inhibitor of lysosomal acidification, also markedly reduced N-glycosylation of DNase I, but in this case only 8 microm mannose was required to restore full glycosylation, indicating that a nonlysosomal source of mannose made a significant contribution. Glycosylation levels were greatly also reduced in glycoconjugate-free medium, when endosomal membrane trafficking was blocked by expression of a mutant SKD1. From these data, we conclude that PMI-null cells can salvage mannose from both endogenous and external glycoconjugates via lysosomal and nonlysosomal degradation pathways.  相似文献   

9.
Modification was made to our previously reported method to predict the equilibrium yields for the synthesis of mono- and di-lauroyl mannoses through the lipase-catalyzed condensation of lauric acid and mannose in acetone in the presence of molecular sieves. HPLC and mass spectra (MS) analyses indicated that two types of dilauroyl mannoses, which would be positional isomers of each other and are designated dilauroyl mannose I and II, were produced as well as monolauroyl mannose. The predicted yields of total mannose esters and dilauroyl mannose I agreed well with the experimental ones on the whole. The equilibrium yields of dilauroyl mannose II were higher than the predicted values, while the experimental values of monolauroyl mannose were lower than the predicted values. Revisions requested 26 October 2005; Revisions received 14 December 2005  相似文献   

10.
Current evidence suggests that extracellular mannose can be transported intracellularly and utilized for glycoprotein synthesis; however, the identity and the functional characteristics of the transporters of mannose are controversial. Although the glucose transporters are capable of transporting mannose, it has been postulated that the entry of mannose in mammalian cells is mediated by a transporter that is insensitive to glucose [Panneerselvam, K., and Freeze, H. (1996) J. Biol. Chem. 271, 9417-9421] or by a transporter induced by cell treatment with metformin [Shang, J., and Lehrman, M. A. (2004) J. Biol. Chem. 279, 9703-9712]. We performed a detailed analysis of the uptake of mannose in normal human erythrocytes and in leukemia cell line HL-60. Short uptake assays allowed the identification of a single functional activity involved in mannose uptake in both cell types, with a K(m) for transport of 6 mM. Transport was inhibited in a competitive manner by classical glucose transporter substrates. Similarly, the glucose transporter inhibitors cytochalasin B, genistein, and myricetin inhibited mannose transport by 100%. Using long uptake experiments, we identified a second, high-affinity component associated with the intracellular trapping of mannose in the HL-60 cells that is not directly involved in the transport of mannose via the glucose transporters. Thus, the transport of mannose via glucose transporters is a process which is kinetically and biologically separable from its intracellular trapping. A general survey of human cells revealed that mannose uptake was entirely blocked by concentrations of cytochalasin B that obliterates the activity of the glucose transporters. The transport and inhibition data demonstrate that extracellular mannose, whose physiological concentration is in the micromolar range, enters cells in the presence of physiological concentrations of glucose. Overall, our data indicate that transport through the glucose transporter is the main mechanism by which human cells acquire mannose.  相似文献   

11.
Softening of the flesh and the rise in ethylene evolution and respiration associated with ripening in pear (Pyrus communis L.) fruit was delayed when mannose was vacuum infiltrated into intact fruit. The extent of delay could be modified by altering the concentration or the volume of mannose applied to the fruit. Inhibition of ripening was associated with phosphorylation of mannose to mannose 6-phosphate (M6P), and accumulation of M6P was associated with lowered levels of inorganic phosphate (Pi), glucose 6-phosphate (G6P), and ATP in the fruit tissue. Subsequently, however, as the M6P was metabolized, the levels of Pi, G6P, and ATP increased and ripening processes were concomitantly released from inhibition. Hence, the degree of inhibition by mannose or the release from inhibition was related to the level of M6P in the fruit and its rate of metabolism. The data provide correlative evidence to support a view that one inhibitory effect of mannose is depletion of Pi in the cell as a result of phosphorylation of mannose to M6P. Inhibition of ripening by mannose was not alleviated by co-application of glucose as a competitive substrate for the hexokinase(s), or by Pi, presumably the depleted metabolite. Also, incubation of tissue disks with M6P resulted in inhibition of ethylene production and respiration. The structural analogs of mannose, glucosamine, and 2-deoxyglucose, which have been shown to mimic mannose action in several plant tissues, did not cause inhibition of ripening of pear fruit comparable with that associated with mannose. Both analogs stimulated respiration, and glucosamine caused only a small inhibition of softening and ethylene evolution. Another mannose analog, α-methylmannoside, did inhibit fruit ripening though to a lesser extent than mannose. Its influence was also associated with accumulation of M6P and a decrease of Pi levels. We conclude that the mannose effect may, in part, be due to M6P toxicity, as well as by depletion of Pi.  相似文献   

12.
1. A microsomal enzyme preparation from the yeast Saccharomyces cerevisiae catalyzes the transfer of mannosyl units from GDPmannose to mannose and a number of mannose-containing oligosaccharides and glycosides whereby different glycosidic bonds are formed. 2. Of the compounds tested besides mannose, only those containing an alpha-linked mannosyl unit at the nonreducing position of their molecule were effective as acceptors. Monodeoxyanalogues of mannose as well as alpha-mannose phosphates did not serve as acceptors in the above reaction. 3. The structure of the product formed with mannose as acceptor was determined to be O-alpha-D-mannosyl-(1 leads to 2)-mannose; with alphaMan (1 leads to 6)mannose as the acceptor, the product was alphaMan(1 leads to 6)mannose and with alphaMan-(1 leads to 2)mannose the product was tentatively characterized as a mixture of alphaMan-(1 leads to 3)alphaMan(1 leads to 2)mannose and alphaMan(1 leads to 2)alphaMan(1 leads to 2)mannose. 4. The enzymes catalyzing the formation of different types of glycosidic bonds differed in their acceptor specificity, pH-activity curves and rates of heat denaturation. 5. Radioactive disaccharides were unable to enter the mannan protein molecule in the cell-free system while free radioactive mannose did incorporate into polysaccharide to a minor extent under the same conditions.  相似文献   

13.
The metabolism of mannose was examined in resting cells in vivo using 13C-NMR and 31P-NMR spectroscopy, in cell-free extracts in vitro using 31P-NMR spectroscopy, and by enzyme assays. Plesiomonas shigelloides was shown to transport mannose by a phosphoenolpyruvate-dependent phosphotransferase system producing mannose 6-phosphate. However, a toxic effect was observed when P. shigelloides was grown in the presence of mannose. Investigation of mannose metabolism using in vivo 13C NMR showed mannose 6-phosphate accumulation without further metabolism. In contrast, glucose was quickly metabolized under the same conditions to lactate, ethanol, acetate and succinate. Extracts of P. shigelloides exhibited no mannose-6-phosphate isomerase activity whereas the key enzyme of the Embden-Meyerhof pathway (6-phosphofructokinase) was found. This result explains the mannose 6-phosphate accumulation observed in cells grown on mannose. The levels of phosphoenolpyruvate and Pi were estimated by in vivo 31P-NMR spectroscopy. The intracellular concentrations of phosphoenolpyruvate and Pi were relatively constant in both starved cells and mannose-metabolizing cells. In glucose-metabolizing cells, the phosphoenolpyruvate concentration was lower, and about 80% of the Pi was used during the first 10 min. It thus appears that the toxic effect of mannose on growth is not due to energy depletion but probably to a toxic effect of mannose 6-phosphate.  相似文献   

14.
An assay has been developed to quantitate the amount of mannose 6-phosphate in glycoproteins using high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The method was tested on a recombinant lysosomal enzyme, human alpha-galactosidase A, that contains mannose 6-phosphate. The assay includes two steps: hydrolysis of the glycoprotein in 6.75 M trifluoroacetic acid to release mannose 6-phosphate and quantitation of the released mannose 6-phosphate using HPAEC with PAD. There is a linear relationship between the amount of mannose 6-phosphate measured and the amount of alpha-galactosidase hydrolyzed. The assay is also sensitive for as little as 2.5 microg alpha-galactosidase, which contains 117 pmol mannose 6-phosphate. Further, the assay has been shown to have good day-to-day and operator-to-operator consistency. In order to evaluate the assay for glycoprotein in crude extract, the glycoprotein was separated by SDS-PAGE and transferred to polyvinylidene difluoride membrane. The amount of mannose 6-phosphate in the electroblots following hydrolysis was determined using HPAEC-PAD. The assay was also linear when measuring mannose 6-phosphate on electroblots. Therefore, this assay has been shown to be specific, sensitive, and reproducible.  相似文献   

15.
Xanthan is a bacterial heteropolysaccharide composed of pentasaccharide repeating units, i.e., a cellobiose as a backbone and a trisaccharide consisting of two mannoses and one glucuronic acid as a side chain. Nonreducing terminal mannose residues of xanthan side chains are partially pyruvated. Bacillus sp. GL1 xanthan lyase, a member of polysaccharide lyase family 8, acts specifically on pyruvated side chains of xanthan and yields pyruvated mannose through a beta-elimination reaction by using a single Tyr255 residue as base and acid catalysts. Here we show structural factors for substrate recognition by xanthan lyase through X-ray crystallographic and mutational analyses. The enzyme accommodates mannose and pyruvated mannose at the -1 subsite, although both inhibitor and dissociation constants of the two monosaccharides indicated that the affinity of pyruvated mannose for xanthan lyase is much higher than that of mannose. The high affinity of pyruvated mannose is probably due to the formation of additional hydrogen bonds between the carboxyl group of pyruvated mannose and amino acid residues of Tyr315 and Arg612. Site-directed mutagenesis of the two residues demonstrated that Arg612 is a key residue in recognizing pyruvated mannose. Arg612 is located in the protruding loop covering the substrate, suggesting that the loop functions as a lid that is responsible for the proper accommodation of the substrate at the active site.  相似文献   

16.
The erythrocyte can phosphorylate a variety of hexoses. Since it can consume mannose and glucose equivalently in the hereditary deficiencies of hexokinase and phosphoglucose isomerase and since erythrocyte defense against oxidants is impaired in a variety of hereditary hemolytic anemias, we tested the hypothesis that mannose may be a significant alternative to glucose as a fuel for this defense system. Unexpectedly, mannose inhibited defense against oxidants as manifested by increased Heinz body formation when both normal and high-reticulocyte erythrocytes were incubated with acetylphenylhydrazine (APH). Using APH as the oxidant, mannose-incubated erythrocytes had decreased reduced glutathione stability and impaired hexose oxidation by the pentose shunt compared to glucose-incubated erythrocytes. After incubation with mannose and APH, normal erythrocytes showed a decrease in ATP content. Approximately 25% of the consumed mannose accumulated in the erythrocytes as mannose 6-phosphate. Erythrocytes incubated with mannose and APH displayed a significant loss of redox potential as manifested by decreased NADH/(NADH + NAD+) and NADPH/(NADPH + NADP+) ratios. Since phosphomannose isomerase is the rate-limiting step for mannose metabolism, our results suggest that mannose impairs erythrocyte defense against oxidants by causing ATP depletion and by impairing the regeneration of reduced pyridine nucleotides by the Embden-Meyerhof and pentose phosphate pathways.  相似文献   

17.
The mannose receptor is a 175-kDa transmembrane glycoprotein that appears to be expressed on the surface of terminally differentiated macrophages and Langerhans cells. The ectodomain of the mannose receptor has eight carbohydrate recognition domains. The receptor recognizes the patterns of sugars that adorn a wide array of bacteria, parasites, yeast, fungi, and mannosylated ligands. Clearance studies in whole animals have localized radiolabeled ligands, such as mannosylated bovine serum albumen, not only to macrophages, but also to liver sinusoidal endothelial cells. Hitherto, there has been no comprehensive analysis of expression of the mannose receptor in embryonic and adult mouse tissues. In this study, we have undertaken a systematic survey of the expression of the mannose receptor from early embryogenesis through to adulthood. The mannose receptor is expressed on tissue macrophages throughout the adult mouse as expected. However, the mannose receptor is first observed on embryonic day 9 on cells that line blood island vessel walls in the yolk sac. The mannose receptor is localized on sinusoidal endothelial cells in embryonic liver by embryonic day 11 and in bone marrow at embryonic day 17. This pattern persists in these organs throughout embryogenesis into adulthood when sinusoidal endothelial cells of lymph nodes also express the mannose receptor. The receptor is also found on lymphatic endothelial cells of small intestine. In contrast, sinusoids of spleen and thymus do not express mannose receptor antigen. This study demonstrates that the mannose receptor is expressed on tissue macrophages and on subsets of vascular and lymphatic endothelial cells. Thus, the mannose receptor maybe a marker of the so-called reticuloendothelial system.  相似文献   

18.
Study of developmental changes on hexoses metabolism in rat cerebral cortex   总被引:2,自引:0,他引:2  
We have studied the developmental changes of glucose, mannose, fructose and galactose metabolism in rat cerebral cortex. As the animals aged, glucose, mannose and fructose oxidation to CO2 increased, whereas galactose oxidation decreased. Lipid synthesis from glucose and fructose also increased with age, that from mannose decreased and galactose did not change. Cytochalasin B, a potent non-competitive inhibitor of sodium-independent glucose transport, significantly impaired glucose, mannose and galactose metabolism, but had no effect on fructose metabolism. Both galactose or fructose did not change, whereas mannose declined the glucose metabolism. Glucose decreased fructose, galactose and mannose metabolism. Our results show that besides glucose, the metabolism of mannose, galactose and fructose present developmental changes from fetal to adult age, and reinforce the literature data indicating that mannose and galactose are transported by glucose carriers, while fructose is not.  相似文献   

19.
Here, focus is on Corynebacterium glutamicum mannose metabolic genes with the aim to improve this industrially important microorganism’s ability to ferment mannose present in mixed sugar substrates. cgR_0857 encodes C. glutamicum’s protein with 36% amino acid sequence identity to mannose 6-phosphate isomerase encoded by manA of Escherichia coli. Its deletion mutant did not grow on mannose and exhibited noticeably reduced growth on glucose as sole carbon sources. In effect, C. glutamicum manA is not only essential for growth on mannose but also important in glucose metabolism. A double deletion mutant of genes encoding glucose and fructose permeases (ptsG and ptsF, respectively) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was not able to grow on mannose unlike the respective single deletion mutants with mannose utilization ability. A mutant deficient in ptsH, a general PTS gene, did not utilize mannose. These indicate that the glucose-PTS and fructose-PTS are responsible for mannose uptake in C. glutamicum. When cultured with a glucose and mannose mixture, mannose utilization of manA-overexpressing strain CRM1 was significantly higher than that of its wild-type counterpart, but with a strong preference for glucose. ptsF-overexpressing strain CRM2 co-utilized mannose and glucose, but at a total sugar consumption rate much lower than that of the wild-type strain and CRM1. Strain CRM3 overexpressing both manA and ptsF efficiently co-utilized mannose and glucose. Under oxygen-deprived conditions, high volumetric productivity of organic acids concomitant with the simultaneous consumption of the mixed sugars was achieved by the densely packed growth-arrested CRM3 cells.  相似文献   

20.
Mannose in N-glycans is derived from glucose through phosphomannose isomerase (MPI, Fru-6-P ↔ Man-6-P) whose deficiency causes a congenital disorder of glycosylation (CDG)-Ib (MPI-CDG). Mannose supplements improve patients'' symptoms because exogenous mannose can also directly contribute to N-glycan synthesis through Man-6-P. However, the quantitative contributions of these and other potential pathways to glycosylation are still unknown. We developed a sensitive GC-MS-based method using [1,2-13C]glucose and [4-13C]mannose to measure their contribution to N-glycans synthesized under physiological conditions (5 mm glucose and 50 μm mannose). Mannose directly provides ∼10–45% of the mannose found in N-glycans, showing up to a 100-fold preference for mannose over exogenous glucose based on their exogenous concentrations. Normal human fibroblasts normally derive 25–30% of their mannose directly from exogenous mannose, whereas MPI-deficient CDG fibroblasts with reduced glucose flux secure 80% of their mannose directly. Thus, both MPI activity and exogenous mannose concentration determine the metabolic flux into the N-glycosylation pathway. Using various stable isotopes, we found that gluconeogenesis, glycogen, and mannose salvaged from glycoprotein degradation do not contribute mannose to N-glycans in fibroblasts under physiological conditions. This quantitative assessment of mannose contribution and its metabolic fate provides information that can help bolster therapeutic strategies for treating glycosylation disorders with exogenous mannose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号