首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutation in theCENTRORADIALIS (CEN) gene ofAntirrhinum and in theTERMINAL FLOWER 1 (TFL1) gene ofArabidopsis causes their indeterminate inflorescence to determinate. We clonedCEN/TFL1 homologs fromNicotiana tabacum, the wild-type of which has a determinate inflorescence. TheCEN gene was expressed in the inflorescnece meristem and kept its inflorescence meristem identity, whereas the tobacco homolog (NCH) was expressed at a low level throughout the plant’s development. AlthoughCEN andNCH are highly homologous genes, they may have been recruited to different developmental functions during their evolution. TwoNCH genes are derived from amphidiploidN. tabacum, but both of them hybridized with its diploid parents,N. sylvestris andN. tomentosiformis. Southern blotting, and the genomic organization ofTFL1 inArabidopsis revealed that anotherCEN homolog exists in the genome ofArabidopsis. These results suggest that there are two copies of theCEN homolog per diploid plant. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology” These two authors contributed to this work equally.  相似文献   

2.
Byzova M  Verduyn C  De Brouwer D  De Block M 《Planta》2004,218(3):379-387
Oilseed rape (Brassica napus L.) genotypes with no or small petals are thought to have advantages in photosynthetic activity. The flowers of field-grown oilseed rape form a bright-yellow canopy that reflects and absorbs nearly 60% of the photosynthetically active radiation (PAR), causing a severe yield penalty. Reducing the size of the petals and/or removing the reflecting colour will improve the transmission of PAR to the leaves and is expected to increase the crop productivity. In this study the hairpin RNA-mediated (hpRNA) gene silencing technology was implemented in Arabidopsis thaliana (L.) Heynh. and B. napus to silence B-type MADS-box floral organ identity genes in a second-whorl-specific manner. In Arabidopsis, silencing of B-type MADS-box genes was obtained by expressing B. napus APETALA3 (BAP3) or PISTILLATA (BPI) homologous self-complementary hpRNA constructs under control of the Arabidopsis A-type MADS-box gene APETALA1 (AP1) promoter. In B. napus, silencing of the BPI gene family was achieved by expressing a similar hpRNA construct as used in Arabidopsis under the control of a chimeric promoter consisting of a modified petal-specific Arabidopsis AP3 promoter fragment fused to the AP1 promoter. In this way, transgenic plants were generated producing male fertile flowers in which the petals were converted into sepals (Arabidopsis) or into sepaloid petals (B. napus). These novel flower phenotypes were stable and heritable in both species.Abbreviations PAR photosynthetically active radiation - ST-LS1 potato light-inducible tissue-specific ST-LS1 gene - GUS -glucuronidase  相似文献   

3.
The characteristic curd of cauliflower (Brassica oleracea var. botrytis L.) consists of proliferating, arrested inflorescence and floral meristems. However, the origins and events leading to the domestication of this important crop trait remain unclear. A similar phenotype observed in the ap1-1/cal-1 mutant of Arabidopsis thaliana led to speculation that the orthologous genes from B. oleracea may be responsible for this characteristic trait. We have carried out a detailed molecular and genetic study, which allows us to present a genetic model based on segregation of recessive alleles at specific, mapped loci of the candidate genes BoCAL and BoAP1. This accounts for differences in stage of arrest between cauliflower and Calabrese broccoli (B. oleracea var. italica Plenck), and predicts the intermediate stages of arrest similar to those observed in Sicilian Purple types. Association of alleles of BoCAL-a with curding phenotypes of B. oleracea is also demonstrated through a survey of crop accessions. Strong correlations exist between specific alleles of BoCAL-a and discrete inflorescence morphologies. These complementary lines of evidence suggest that the cauliflower curd arose in southern Italy from a heading Calabrese broccoli via an intermediate Sicilian crop type. PCR-based assays for the two key loci contributing to curd development are suitable for adoption in marker-assisted selection.  相似文献   

4.
The AP1/FUL clade of MADS box genes have undergone multiple duplication events among angiosperm species. While initially identified as having floral meristem identity and floral organ identity function in Arabidopsis, the role of AP1 homologs does not appear to be universally conserved even among eudicots. In comparison, the role of FRUITFULL has not been extensively explored in non-model species. We report on the isolation of three AP1/FUL genes from cultivated spinach, Spinacia oleracea L. Two genes, designated SpAPETALA1-1 (SpAP1-1) and SpAPETALA1-2 (SpAP1-2), cluster as paralogous genes within the Caryophyllales AP1 clade. They are highly differentiated in the 3′, carboxyl-end encoding region of the gene following the third amphipathic alpha-helix region, while still retaining some elements of a signature AP1 carboxyl motifs. In situ hybridization studies also demonstrate that the two paralogs have evolved different temporal and spatial expression patterns, and that neither gene is expressed in the developing sepal whorl, suggesting that the AP1 floral organ identity function is not conserved in spinach. The spinach FRUITFULL homolog, SpFRUITFULL (SpFUL), has retained the conserved motif and groups with Caryophyllales FRUITFULL homologs. SpFUL is expressed in leaf as well as in floral tissue, and shows strong expression late in flower development, particularly in the tapetal layer in males, and in the endothecium layer and stigma, in the females. The combined evidence of high rates of non-synonymous substitutions and differential expression patterns supports a scenario in which the AP1 homologs in the spinach AP1/FUL gene family have experienced rapid evolution following duplication. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
7.
Arabidopsis thaliana (L.) Heynh. has been used as a model system to investigate the regulatory genes that control and coordinate the determination, differentiation and morphogenesis of the floral meristem and floral organs. We show here that benzylaminopurine (BAP), a cytokinin, influences flower development inArabidopsis and induces partial phenocopies of known floral homeotic mutants. Application of BAP to wild-type inflorescences at three developmental stages results in: (i) increase in floral organ number; (ii) formation of abnormal floral organs and (iii) induction of secondary floral buds in the axils of sepals. These abnormalities resemble the phenotypes of mutants,clv1 (increase in organ number),ap1,ap2,ap3 (abnormal floral organs) andap1 (secondary floral buds in the axils of first-whorl organs). In addition, BAP induces secondary floral buds in the axils of perianth members ofapt2-6, ap3-1 andag mutants, and accentuates the phenotype of theapt2-1 mutant to resemble theapt2-6 mutant. These observations suggest that exogenous BAP suppresses the normal functioning of the genes for floral meristem identity and thereby affects flower development and the later stages of floral organ differentiation.Abbreviations BAP N6-benzylaminopurine - CK cytokinin  相似文献   

8.
Plant productivity is greatly influenced by various environmental stresses, such as high salinity and drought. Earlier, we reported the isolation of topoisomerase 6 homologs from rice and showed that over expression of OsTOP6A3 and OsTOP6B confers abiotic stress tolerance in transgenic Arabidopsis plants. In this study, we have assessed the function of nuclear-localized topoisomerase 6 subunit A homolog, OsTOP6A1, in transgenic Arabidopsis plants. The over expression of OsTOP6A1 in transgenic Arabidopsis plants driven by cauliflower mosaic virus-35S promoter resulted in pleiotropic effects on plant growth and development. The transgenic Arabidopsis plants showed reduced sensitivity to stress hormone, abscisic acid (ABA), and tolerance to high salinity and dehydration at the seed germination; seedling and adult stages as reflected by the percentage of germination, fresh weight of seedlings and leaf senescence assay, respectively. Concomitantly, the expression of many stress-responsive genes was enhanced under various stress conditions in transgenic Arabidopsis plants. Moreover, microarray analysis revealed that the expression of a large number of genes involved in various processes of plant growth and development and stress responses was altered in transgenic plants. Although AtSPO11-1, the homolog of OsTOP6A1 in Arabidopsis, has been implicated in meiotic recombination; the present study demonstrates possible additional role of OsTOP6A1 and provides an effective tool for engineering crop plants for tolerance to different environmental stresses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The B-class MADS-box genes composed of APETALA3 (AP3) and PISTILLATA (PI) lineages play an important role in petal and stamen identity in previously studied flowering plants. We investigated the diversification of the AP3-like and PI-like MADS-box genes of eight species in five basal angiosperm families: Amborella trichopoda (Amborellaceae); Brasenia schreberi and Cabomba caroliniana (Cabombaceae); Euryale ferox, Nuphar japonicum, and Nymphaea tetragona (Nymphaeaceae); Illicium anisatum (Illiciaceae); and Kadsura japonica (Schisandraceae). Sequence analysis showed that a four amino acid deletion in the K domain, which was found in all previously reported angiosperm PI genes, exists in a PI homologue of Schisandraceae, but not in six PI homologues of the Amborellaceae, Cabombaceae, and Nymphaeaceae, suggesting that the Amborellaceae, Cabombaceae, and Nymphaeaceae are basalmost lineages in angiosperms. The results of molecular phylogenetic analyses were not inconsistent with this hypothesis. The AP3 and PI homologues from Amborella share a sequence of five amino acids in the 5 region of exon 7. Using the linearized tree and likelihood methods, the divergence time between the AP3 and PI lineages was estimated as somewhere between immediately after to several tens of millions of years after the split between angiosperms and extant gymnosperms. Estimates of the age of the most recent common ancestor of all extant angiosperms range from ~140–210 Ma, depending on the trees used and assumptions made.  相似文献   

10.
Identification of broccoli and cauliflower cultivars with RAPD markers   总被引:43,自引:0,他引:43  
Summary RAPD (Random Amplified Polymorphic DNA) markers generated by 4 arbitrary 10-mer primers, discriminated 14 broccoli and 12 cauliflower cultivars (Brassica oleracea L.) by banding profiles. The size of the amplified DNA fragments ranged from 300 to 2600 base pairs. Twenty-eight percent of the markers were fixed in both broccoli and cauliflower, whereas 12.5% were specific to either crop. The rest were polymorphic in either or both crops. The markers generated by two and three primers were sufficient to distinguish each of the broccoli and cauliflower cultivars, respectively. The average difference in markers was 14.5 between broccoli and cauliflower markers, 5.8 between two broccoli cultivars and 7.9 between two cauliflower cultivars. Larger differences for each crop were found between cultivars from different seed companies than within the same company. RAPD markers provide a quick and reliable alternative to identify broccoli and cauliflower cultivars.  相似文献   

11.
Characteristic of parasitism of diamondback moth by two larval parasites   总被引:7,自引:0,他引:7  
Laboratory and greenhouse studies were conducted to investigate the suitability of 2 hymenopterous parasites,Diadegma eucerophaga Horstmann andApanteles plutellae Kurdjumov for introduction to control diamondback moth (DBM),Plutella xylostella (L.), a destructive pest of crucifers in tropical to subtropical Southeast Asia. Parasitism byD. eucerophaga was high at temperature range of 15°C to 25°C and that ofA. plutellae, at 20°C to 35°C. Both parasites were active in searching for host and oviposited only during photophase. No parasitism was observed during darkness. WhereasA. plutellae could parasitize all instars of DBM larvae,D. eucerophaga parasitized only the first 3 instars and failed to parasitize the 4th. Parasitism byD. eucerophaga was greater when DBM larvae were feeding on common cabbage (Brassica oleracea var.capitata L.), than on cauliflower (B. oleracea var.italica L.), broccoli (B. oleracea var.botrytis L.) or Chinese cabbage [Brassica campestris L. ssp.pekinensis (Lour) Olsson].A. plutellae parasitism was greater when DBM larvac were feeding on Chinese cabbage than on common cabbage, cauliflower or broccoli. Storage of pupae at 0°C and 4°C to 6°C for up to 2 weeks reduced emergence ofD. eucerophaga adults more than that ofA. plutellae. A non-selective insecticide, deltamethrin, was toxic to adults of both parasites but selective ones such asBacillus thuringiensis, teflubenzuron, and pirimicarb were not. Pupae were more tolerant than adults to insecticides. The insecticide-resistant Luchu strain and susceptible laboratory strain of DBM suffered an equal level of parasitism by both parasites.   相似文献   

12.
13.
Nearly 1000 plants have been regenerated from leaf protoplasts of two cauliflower (Brassica oleracea ssp.botrytis) alloplasmic inbred lines. One line (7642A) carried the Ogura (R1) cms cytoplasm derived from radish; the other line (7642B) carried a normalBrassica cytoplasm and was the fertile maintainer for the cms line. The majority of regenerated plants displayed normal vegetative morphology; they formed normal cauliflower heads and retained the floral characteristics of seed-grown plants from which they were derived. We found no change in either male sterility or in the low temperature-induced chlorosis associated with the 7642A line. Mitochondrial DNA analysis by hybridization with five cloned mtDNA probes revealed no apparent alteration in 75 regenerated plants of both lines. These results indicate that cytoplasmic traits inBrassica oleracea are stable after one cycle of in vitro culture and regeneration.  相似文献   

14.
Plant pathogens alter the course of plant developmental processes, resulting in abnormal morphology in infected host plants. Phytoplasmas are unique plant‐pathogenic bacteria that transform plant floral organs into leaf‐like structures and cause the emergence of secondary flowers. These distinctive symptoms have attracted considerable interest for many years. Here, we revealed the molecular mechanisms of the floral symptoms by focusing on a phytoplasma‐secreted protein, PHYL1, which induces morphological changes in flowers that are similar to those seen in phytoplasma‐infected plants. PHYL1 is a homolog of the phytoplasmal effector SAP54 that also alters floral development. Using yeast two‐hybrid and in planta transient co‐expression assays, we found that PHYL1 interacts with and degrades the floral homeotic MADS domain proteins SEPALLATA3 (SEP3), APETALA1 (AP1) and CAULIFLOWER (CAL). This degradation of MADS domain proteins was dependent on the ubiquitin–proteasome pathway. The expression of floral development genes downstream of SEP3 and AP1 was disrupted in 35S::PHYL1 transgenic plants. PHYL1 was genetically and functionally conserved among other phytoplasma strains and species. We designate PHYL1, SAP54 and their homologs as members of the phyllody‐inducing gene family of ‘phyllogens’.  相似文献   

15.
The shoot apical meristem (SAM) is responsible for forming most of the above-ground portion of the plant. We sought to isolate regulatory genes expressed in the Arabidopsis SMA by screening a Brassica oleracea (cauliflower) meristem cDNA library with the homeobox fragment from the maize Knotted-1 (Kn1) gene. We isolated and characterized the corresponding clone, Merihb1, from Arabidopsis. Analysis shows that the predicted MERIHB1 protein exhibits strong homology to KN1 and RS1 from maize, SBH1 from soybean, and KNAT1 and KNAT2 from Arabidopsis. Merihb1 is highly expressed in mRNA from cauliflower meristems and also accumulates in stem and flower mRNA. Based on the similarity of the Merihb1 and Kn1 sequences, expression patterns, and in situ hybridizations, we suggest that Merihb1 represents an Arabidopsis homologue of the maize Kn1 gene.  相似文献   

16.
17.
Flowers and shoots are derived from specialized groups of stem cells termed meristems. Recent studies in Arabidopsis have identified factors that contribute to meristem structure and identity, such as CLAVATA1, CLAVATA3, and SHOOTMERISTEMLESS, which act in both shoot and flower meristems, as well as LEAFY and APETALA1 which specifically determine a floral fate.  相似文献   

18.
Dornelas MC  Rodriguez AP 《Planta》2006,223(2):306-314
A homolog of FLORICAULA/LEAFY, CfLFY (for Cedrela fissilis LFY), was isolated from tropical cedar. The main stages of the reproductive development in C. fissilis were documented by scanning electron microscopy and the expression patterns of CfLFY were studied during the differentiation of the floral meristems. Furthermore, the biological role of the CfLFY gene was assessed using transgenic Arabidopsis plants. CfLFY showed a high degree of similarity to other plant homologs of FLO/LFY. Southern analysis showed that CfLFY is a single-copy gene in the tropical cedar genome. Northern blot analysis and in situ hybridization results showed that CfLFY was expressed in the reproductive buds during the transition from vegetative to reproductive growth, as well as in floral meristems and floral organs but was excluded from the vegetative apex and leaves. Transgenic Arabidopsis lfy26 mutant lines expressing the CfLFY coding region, under the control of the LFY promoter, showed restored wild-type phenotype. Taken together, our results suggest that CfLFY is a FLO/LFY homolog probably involved in the control of tropical cedar reproductive development. Accession numbers: AY633621 (CfLFY gene) and AY633622 (CfLFY mRNA)  相似文献   

19.
Structure and ontogeny of stomata and trichomes have been studied in 23 species and 3 varieties of theUrticales. Stomata are anomocytic, more rarely paracytic; anisocytic and sometimes helicocytic and transitorial types are found inUrticaceae andDorstenia, rarely inArtocarpus. The ontogeny of anomocytic and actinocytic stomata is perigenous, of paracytic either mesogenous or perigenous, of anisocytic either mesogenous or mesoperigenous, and of helicocytic and transitional types mesogenous. Among trichomes eglandular unicellular (wide spread), bicellular or uniseriate filiform (Cannabis); glandular capitate with uni- or bicellular (Moraceae, Ulmaceae, Cannabaceae), uniseriate filiform (Ulmaceae) or multiseriate stalk (Cannabis); sunken glands (Artocarpus); uniseriate glandular with uniseriate stalk (Celtis), and stinging emergences (Urticaceae) have been observed. It is concluded that theUrticales represent a natural order with four families:Ulmaceae, Moraceae, Urticaceae andCannabaceae which are distinct but interrelated with each other.  相似文献   

20.
Hepworth SR  Klenz JE  Haughn GW 《Planta》2006,223(4):769-778
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear “chimeric” at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.Shelley R. Hepworth and Jennifer E. Klenz contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号