首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Sorghum bicolor is a recalcitrant species for tissue culture regeneration and genetic transformation. Browning of explants is one of the factors limiting organ and tissue cultures. To overcome this, callus tissue was initiated from the shoot tips of in vitro germinating seeds (S. bicolor cv. Róna 1), and then cultured on modified MS media (Murashige and Skoog in Physiol Plant 15:473–497, 1962). In the first experiment, we tested callus induction on several media supplemented with casein hydrolysate, polyvinylpyrrolidone, honey, and sucrose. The best callus induction was recorded for the medium with honey and sucrose (80.0%) and for control medium (79.8%). Shoot regeneration was tested on the MS medium with 6-benzylaminopurine (BAP) supplemented with honey and sucrose at a 1:1 ratio (by weight) or with sucrose only. The highest percentage of calluses regenerating shoots was noted for those induced on the medium with sucrose and honey—approx. four times higher when compared to the control. Rooted plantlets were acclimatized with a 92% survival rate. In the second experiment, we analyzed culture responses to various ways of honey application to the induction media: honey (autoclaved or filtered) in presence or absence of sucrose. Supplementation of the medium with fructose, glucose, and maltose at a proportion typical for honey was also investigated. The explant and callus survival rates were similar to those of the honey–sucrose combination in the first experiment. Only presence of both sucrose and honey in the induction medium improved the total regeneration rate to 37.9% over the control (18.8%). Sucrose and honey appear to act synergistically for shoot regeneration in callus cultures of sorghum.

  相似文献   

2.
Summary Immature embryos of 20 sorghum genotypes were cultured on MS 5 medium containing MS mineral salts supplemented with 2,4-D, zeatin, glycine, niacinamide, Ca-pantothenate, L-asparagine, and vitamins. For regeneration, calli were transferred onto the same medium with the exception that IAA was substituted for 2,4-D. In general, immature embryos obtained 9–12 days after pollination resulted in the best redifferentiation. Ability of calli to regenerate varied among genotypes; cultivars C401-1 and C625 had the highest redifferentiation frequencies. Ability to redifferentiate was heritable and acted as a dominant trait. At least two gene pairs were involved. Regenerated R0 plants were planted in a greenhouse and their selfed (R1 and R2) progenies were planted in the field and examined for morphological and cytological variations. The majority of the phenotypic variations noted in R0 were not transmitted to later generations. However, variants for plant height, degree of fertility, and midrib color persisted in R1 and R2 generations. A variation in tallness was attributable to one dominant mutant gene. Short stature and male sterility variants appeared to be consequences of recessive mutant genes controlling those traits. Minor variations in peroxidase banding patterns were found among R0 plants.This study was supported by a research grant from Kansas Sorghum Commission and by a Research Fellowship to the senior author from the Ministry of Agriculture, Animal Husbandry, and Fisheries, China. Contribution 86-456-J from the Kansas Agricultural Experiment Station  相似文献   

3.
The sequence of pollen development from the tetrad stage to the mature tricellular grain was studied in freshly harvested anthers of Sorghum bicolor. This pattern of development was then compared with that occurring during panicle pretreatment and subsequent anther incubation in vitro. It was found that during pretreatment at 7° C mitoses of the vegetative cell were induced in up to 30% of the pollen. During anther incubation procallus development was highly polarised with contributions from both the generative and vegetative cells. After pretreatment at 14 or 20° C the generative cell became detached from the pollen wall and it was not possible to determine whether subsequent development involved only the vegetative cell or both the vegetative and generative cells.Although retarded pollen grains were observed both in vivo and in vitro, and were occasionally seen to divide in culture, they did not appear to be the source of the procalluses produced.  相似文献   

4.
Leaf discs from olive (Olea europaea L.) grown in vitro and immature zygotic embryos collected at 50, 75, 90 and 105 days after full bloom were tested for their somatic embryogenic capacity. The embryos were grown in half-strength MS medium and half-strength OM medium with BAP combinated with either 2,4-D or NAA. Incubation was either in an initial dark period followed by 16h daylight or in 16h daylight throughout. Somatic embryogenesis, approx. 40%, mostly directly from the embryos, was observed only in 75-day-old embryos in medium containing low cytokinin and auxin concentrations. Differentiation was inhibited by 2,4-D whereas NAA did not. In leaf discs and younger and older zygotic embryos, only callus and root formation was observed. Somatic embryos were germinated and then potted-up to soil.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - NAA naphtaleneacetic acid  相似文献   

5.
Summary Somatic embryos of carob (Ceratonia siliqua L.) were induced from cotyledonary segments excised from immature seeds when cultured on Murashige and Skoog media supplemented with several combinations of 6-benzylaminopurine (BA) and indole-3-butyric acid (IBA). The best frequencies of induction (33.8%) were obtained when 4.4 μM BA and 0.5 μM IBA were used. Shoots were also sporadically formed in the same media. When IBA was replaced by other auxins in the induction media, only α-naphthaleneacetic acid (NAA) and indole-3-acetic acid (IAA) could induce somatic embryogenesis, although at lower rates than IBA. 2,4-Dichlorophenoxyacetic acid and 4-amino-3,5,6-trichloropicolinic acid were completely ineffective. Besides culture media composition, the developmental stage of the explants at the time of culture showed a strong influence on somatic embryogenesis induction, with cotyledons from stage II pods providing the highest levels of induction. By contrast, the genotype of the explant did not determine a significant role in the induction process. Attempts to achieve somatic embryo germination were mostly unsuccessful, since only shoot development was observed; the highest frequencies of development occurred on media containing only gibberellic acid (3.0 μM). For plant regeneration, the developed shoots were further rooted on IBA-supplemented media, and the plantlets obtained were transferred to soil, where c. 88% of them survived. Histological observations showed the presence of morphologically normal and abnormal somatic embryos, the latter displaying an abnormal pattern of vascular bundles. Ultrastructural analysis showed that the cells of the globular embryos had a dense cytoplasm, whereas those not involved in somatic embryo formation showed signs of senescence. Histological studies were also used to distinguish between somatic embryos and shoots originated in the same media.  相似文献   

6.
Tissue culture methods for improvement of cotton has lagged seriously compared to other major crops. A method for regeneration of cotton which includes a morphogenetically competent cell suspension was needed to facilitate selection of stress-resistant variants and gene manipulation. Preliminary screening of eight strains of Gossypium hirsutum L. for embryogenic potential resulted in the production of somatic embryos in all strains. Coker 312 was selected for use in the development of a model regeneration system for G. hirsutum. Calli were initiated from hypocotyl tissues of 3-day-old-seedlings. Globular embryos were present after six weeks in culture. Calli were subcultured to liquid suspension in growth regulator-free medium. After three to four weeks, suspensions were sieved to collect globular and heart stage embryos. Collected embryos developed further when plated onto semi-solid medium. To induce germination and plantlet growth, mature embryos were placed on sterile vermiculite saturated with medium. Upon development of roots and two true leaves, plantlets were potted in peat and sand, and hardened. Mature plants and progeny have been obtained with this procedure. A high percentage of infertile plants was observed among the regenerants.Abbreviations NAA 1 naphthaleneacetic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - MS Murashige and Skoog - BA 6 benzylamino purine - 2i P N6-(2-isopentenyladenine  相似文献   

7.
Novel protocols for production of multiple shoot-tip clumps and somatic embryos of Sorghum bicolor (L.) Moench were developed with long-term goal of crop improvement through genetic transformation. Multiple shoot-tip clumps were developed in vitro from shoot-tip explant of one-week old seedling, cultured on MS medium containing only BA (0.5, 1 or 2 mg/l) or both BA (1 or 2 mg/l) and 2,4-D (0.5 mg/l) with bi-weekly subculture. Somatic embryos were directly produced on the enlarged dome shaped growing structures that developed from the shoot-tips of one-week old seedling explants (without any callus formation) when cultured on MS medium supplemented with both 2,4-D (0.5 mg/l) and BA (0.5 mg/l). However, the supplementation of MS medium with only 2,4-D (0.5 mg/l) induced compact callus without any plantlet regeneration. Each multiple shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing indole-3-butyric acid (IBA 1 mg/l). The plants were successfully transplanted to glasshouse and grown to maturity with a survival rate of 98%. Morphogenetic response of the explants was found to be genotypically independent.  相似文献   

8.
 A protocol for plant regeneration from mesophyll/protoplasts of sorghum [Sorghum bicolor (L.) Moench] was developed. The yield of intact protoplasts, their subsequent divisions and regeneration were genotype-dependent. The genotype 296B was always more responsive than IS 32266. For 296B, the sixth leaf from 18-day-old plants kept in dark for 2 days before harvesting was found to be the most suitable source of viable protoplasts. The first division was observed 10–12 days after plating, and the second division after 12–14 days. The maximum plating efficiency was 4.8% in 296 B, followed by 2.48% in IS 32266. Microcolonies were visible after 25–30 days, and microcalli after 60–75 days. Whole plants were obtained after 6–8 weeks of culture of microcalli on MS medium containing 0.2 mg l–1 kinetin and 2 mg l–1 BAP. The frequency of regeneration in 296B and IS 32266 was 12.80% and 10.58%, respectively. Ten plants transferred to pots in the glasshouse established well. The seeds collected from glasshouse-grown plants were sown in the field where plants were grown to maturity. Received: 7 October 1998 / Revision received: 13 January 1999 / Accepted: 20 January 1999  相似文献   

9.
Sixty-two single-copy sorghum DNA clones were used to compare restriction fragment patterns of 53 sorghum accessions from Africa, Asia and the United States. Included were accessions from five morphological races of the cultivated subspecies bicolor, and four races of the wild subspecies verticilliflorum. From two to twelve alleles were detected with each probe. There was greater nuclear diversity in the wild subspecies (255 alleles in ten accessions) than in the domestic accessions (236 alleles in 37 accessions). Overall, 204 of the 340 alleles (60%) that were detected occurred in both subspecies. Phylogenetic analysis using parsimony separated the subspecies into separate clusters, with one group of intermediate accessions. Though exceptions were common, especially for the race bicolor, accessions classified as the same morphological race tended to group together on the basis of RFLP similarities. Selection for traits such as forage quality may have led to accessions genetically more similar to other races being classified as bicolors, which have a loose, small-grained panicle similar to wild races. Population statistics, calculated using four nuclear and four cytoplasmic probes that detect two alleles each, revealed a low but significant amount of heterozygosity, and showed little differentiation in alleles in the wild and cultivated subspecies. Outcrossing with foreign pollen appears to have been more important than migration via seed dispersal as a mechanism for gene flow between the wild and domestic accessions included in this study.  相似文献   

10.
A RFLP linkage map of sorghum composed principally of markers detected with sorghum low-copy-number nuclear DNA clones has been constructed. The map spans 1789 cMs and consists of 190 loci grouped into 14 linkage groups. The 10 largest linkage groups consist of from 10 to 24 markers and from 103 to 237 cMs, and the other 4 linkage groups consist of from 2 to 5 markers and from 7 to 62 cMs. The map was derived in Sorghum bicolor ssp. bicolor by analysis of a F2 population composed of 50 plants derived from a cross of IS 3620C, a guinea line, and BTx 623, an agronomically important inbred line derived from a cross between a zera zera (a caudatum-like sorghum) and an established kafir line. The restriction fragment length polymorphism (RFLP) frequency detected in this population using polymerase chain reaction (PCR)-amplifiable low-copy-number sorghum clones and five restriction enzymes was 51%. A minimal estimate of the number of clones that detect duplicate sequences is 11 %. Null alleles occurred at 13% of the mapped RFLP loci.  相似文献   

11.
Plant Cell, Tissue and Organ Culture (PCTOC) - Sorghum bicolor (L.) Moench, plants were regenerated from 4 to 5 month old callus cultures originally derived from seedling explants. Somaclonal...  相似文献   

12.
Molecular markers [random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP)] were used to determine the frequency of DNA polymorphism in grain sorghum (Sorghum bicolor (L.) Moench). Twenty-nine oligonucleotide primers were employed for RAPDs, generating a total of 262 DNA fragments, of which 145 were polymorphic in at least one pairwise comparison between 36 genotypes. Individual primers differed significantly in their ability to detect genetic polymorphism in the species. The overall frequency of polymorphisms was low with a mean frequency of 0.117 polymorphisms per RAPD band being obtained from all pairwise comparisons between genotypes, with maximum and minimum values of 0.212 and 0.039, respectively. Results from phenetic analysis of bandsharing data were consistent with current sub-specific groupings of the species, with clusters of Durra, Zerazera, Caud-Nig, Caud-Kaura and Caffrorum being discernible. The results also indicated that individuals of a similar taxonomic grouping but different geographic origin may be genetically less identical than previously considered. Similar frequencies of polymorphism to that obtained with RAPDs were obtained with RFLPs. Results from these experiments indicated that a high level of genetic uniformity exists within S. bicolor.  相似文献   

13.
Friable callus was initiated from shoot apices of Gloriosa superba L. on basal MS medium supplemented with 2, 4-D (4mg L(-1)) + Kn(5 mg L(-1)) + CH(10 mg L(-1)) + CW(20%). Subculture of callus on the same medium after 4-5 weeks showed induction of large number of somatic embryos, which was confirmed with histological studies. Development of embryoids in plantlet took place when the embryogenic callus was transferred to basal MS medium supplemented with BAP (5 mg L(-1)), CH(50 mg L(-1)) +CW(20%). Roots were developed by subculturing them on to the medium containing Kn or BAP (5 mg L(-1)) and IBA (4 mg L(-1)). Plantlets were successfully transferred to pots containing mixture of soil, sand and farmyard manure (2:1:1).  相似文献   

14.
Protoplasts were isolated from embryogenic calli of Asparagus officinalis L. cv. Mary Washington and cultured in 1/2 MS medium with 1 mg/l NAA, 0.5 mg/l zeatin, 1 g/l L-glutamine, 0.6 M glucose and 0.1% Gellan Gum. Protoplasts started to divide after 3–4 d of culture and formed visible colonies after 30 d of culture. The percentage of colony formation (plating efficiency) was 7.2%. The colonies were then transferred onto Gellan Gum-solidified MS medium containing 1 mg/l 2,4-D and 3% sucrose for further growth. Somatic embryos were induced from all colonies of 0.5–1.0 mm size after transferring to 1/2 MS medium lacking growth regulators. After treating these somatic embryos (1–3 mm) in distilled water for a week, 30–40% of them germinated normally and grew into plantlets 20–30 d after transplanting on 1/2 MS medium containing 1 mg/l IBA, 1 mg/l GA3 and 1% sucrose. These protoplast-derived plants were diploid with 20 chromosomes.Abbreviations BA 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - GA3 gibberellic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962)  相似文献   

15.
We report here an in vitro culture system that provides reliable, highly efficient regeneration from immature embryos of pearl millet [Pennisetum glaucum (L.) R. Br.] and sorghum [Sorghum bicolor (L.) Moench]. Immature embryos were isolated 10-20 days after pollination and cultured on various L3 media. The influence of different parameters during the callus induction phase was examined with respect to the regeneration rate: (1) the concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and various cytokinins; (2) the addition of AgNO3; (3) the use of maltose or sucrose as a carbon source. Modifications in the phytohormones alone resulted in the regeneration of fertile sorghum plants at high efficiency. Significant increases in the regeneration rates of pearl millet genotypes were achieved by the combination of sucrose as a carbon source and silver nitrate as a potential ethylene inhibitor.  相似文献   

16.
Previous studies have demonstrated that pollen of sorghum [Sorghumbicolor (L.) Moench] loses capacity to both germinate in vitroand to set seed in vivo soon after being shed. The current studyevaluates the capacity for dehydrated pollen to effect in vitrogermination, reduce tetrazolium chloride, and set seed on cytoplasmicmale sterile plants. Morphological changes during pollen germinationwere examined by scanning electron microscopy (SEM). Close to70% of the pollen germinated in 5 min, or less, when collectedat 80% relative humidity (RH) and stored in sealed glass vials.Pollen tubes elongated autotropically with atmospheric humidityapparently being a controlling factor in the process. Pollendehydrated at 50% RH and 25°C for 15-30 min neither germinatedin vitro, reduced tetrazolium chloride, nor set seed on malesterile plants. Rehydrating the pollen did not restore the capacityfor germination. SEM micrographs demonstrated that elongatingpollen tubes encircled the pollen grain and were contiguousto the surface. A fibrillar-like material existed on the exineof separated pollen grains at the point where the grains hadbeen previously attached.Copyright 1994, 1999 Academic Press Sorghum pollen, germination, seed-set, viability, scanning electron microscopy, Sorghum bicolor (L.) Moench  相似文献   

17.
Hypocotyl segments of 2- to 3-week-old radish (Raphanus sativus L. cv. F1 Handsome Fall) seedlings produced yellowish compact calli when cultured on Murashige and Skoog's (MS) medium supplemented with 1 mgl-1 2,4-dichlorophenoxyacetic acid (2,4-D). Upon transfer onto medium containing 6-benzyladenine and -naphthaleneacetic acid, up to 5.3% of the calli gave rise to a few somatic embryos. When subcultured for 3 to 6 months, 7% of the yellowish, compact calli produced white, compact calli which formed numerous embryos. These calli maintained their embryogenic capacity for over 18 months. When cultured on medium containing 0.1 to 3 mgl-1 2,4-D, up to 90% of longitudinally sliced somatic embryo halves produced calli with numerous secondary embryos. Embryos were transferred onto medium containing 0.1 mgl-1 2,4-D and 1 mgl-1 abscisic acid where they developed into the cotyledonary stage. Upon transfer onto half-strength MS basal medium, approximately 90% of the embryos developed into plantlets. These plantlets were successfully transplanted in potting soil and after cold treatment they were grown to maturity in a phytotron.Abbreviation 2,4-D 2,4-dichlorophenoxyacetic acid - BA 6-benzyladenine - GA3 gibberellin A3 - IAA indole-3-acetic acid - MS Murashige and Skoog - NAA -naphthaleneacetic acid  相似文献   

18.
In Vitro Cellular & Developmental Biology - Plant - An efficient protocol is reported for in vitro plant regeneration through somatic embryogenesis in Piper aduncum, a Brazilian Amazon species...  相似文献   

19.
Summary This report reviews the contributions to the improvement of sorghum (Sorghum bicolor (L.) Moench) through traditional approaches with emphasis on the application of biotechnological methods. Strategies include breeding for higher yield, improved grain quality, and biotic and abiotic stress tolerance. Hybrid development and polyploidy breeding are also discussed. Plant breeders, working in concert with biotechnologists, have developed new powerful tools for plant genetic manipulation and genotype evaluation that will significantly improve the efficiency of plant breeding. Improving sorghum through biotechnology is the latest in a long series of technologies that have been applied to this crop. Five basic tools of technology have been developed for sorghum improvement: (1) in vitro protocols for efficient plant regeneration; (2) molecular markers; (3) gene identification and cloning; (4) genetic engineering and gene transfer technology to integrate desirable traits into the sorghum genome; and (5) genomics and germplasm databases. Reports on studies involving the problems, progress, and prospects for utilizing the biotechnological methods for sorghum improvement are discussed.  相似文献   

20.
Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号