首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested whether preferred running event in track athletes would correlate with the initial rate of phosphocreatine (PCr) resynthesis following submaximal exercise. PCr recovery was measured in the calf muscles of 16 male track athletes and 7 male control subjects following 5 min of repeated plantar flexion against resistance. Pi, PCr, and pH were measured using phosphorus magnetic resonance spectroscopy (31P MRS) with an 8-cm surface coil in a 1.8-T magnet. During exercise, work levels were gradually increased to deplete PCr to 50-60% of the initial value. No drop in pH was seen in any of the subjects during this exercise. The areas of the PCr peaks following exercise were fit to monoexponential curves. Two or three tests were performed on each subject and the results averaged. Athletes were divided into three groups based on their primary event: sprinters running 400 m or less, middle-distance athletes running 400-1500 m, and long-distance athletes running farther than 1500 m. The maximal rates of PCr resynthesis (mmol.min-1.kg-1 muscle weight) were 64.8 +/- 8.6, for long-distance runners; 41.4 +/- 11, for middle-distance runners; 32.0 +/- 7.0, for sprinters; and 38.6 +/- 10, for controls (mean +/- SE). The faster PCr recovery rates seen in long-distance runners compared with sprinters indicate greater oxidative capacity, which is consistent with the known differences between athletes in these events.  相似文献   

2.
To investigate the splitting of the inorganic phosphate (Pi) peak during exercise and recovery, a time-resolved 31phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) technique was used. Seven healthy young sedentary male subjects performed knee flexion exercise in the prone position inside a 2.1-T magnet, with the surface coil for 31P-MRS being placed on the biceps femoris muscle. After a 1-min warm-up without loading, the exercise intensity was increased by 0.41 W at 15-s intervals until exhaustion, followed by a 5-min recovery period. The 31P-MRS were recorded every 5 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of the Pi and phosphocreatine peaks were performed. Five of the seven subjects showed two distinct Pi peaks during exercise, suggesting two different pH distributions in exercising muscle (high pH and low pH region). In these five subjects, the high-pH increased rapidly just after the onset of exercise, while the low-pH peak increased gradually approximately 60 s after the onset of exercise. During recovery, the disappearance of the high-pH peak was more rapid than that of the low-pH peak. These findings suggest that our method 31P-MRS provides a simple approach for studying the kinetics of the Pi peak and intramuscular pH during exercise and recovery.  相似文献   

3.
To study the in vivo recruitment of different fiber types and their metabolic properties, 31P-nuclear magnetic resonance spectroscopy (31P-NMRS) of the human calf muscle was performed in seven normal sedentary subjects. In the exhaustive exercise protocol used, the work load was increased every minute during 5 min. This resulted in a prominent split of the Pi resonance in all subjects, indicating pH compartmentation in the muscles studied. From the chemical shift of the Pi peaks relative to phosphocreatine (PCr) at the end of the exercise, intracellular pH (pHi) averaged 6.92 +/- 0.05 (SD) in compartment 1 and 6.23 +/- 0.15 in compartment 2. The recovery of both Pi resonances after exercise could be followed easily in five of these subjects. The recovery rate of the Pi peak is a good estimate of the oxidative metabolism at the end of the exercise. A monoexponential regression analysis showed that the mean initial recovery rate S0 was 2.49 +/- 0.17%/s in compartment 1 and only 0.87 +/- 0.12%/s in compartment 2, indicating aerobic function three times higher in compartment 1 at the end of exercise. The mean relative ATP fraction dropped significantly (P less than 0.001), from 20.0 +/- 1.0% of the total 31P signal integral before exercise to 14.0 +/- 1.6% at the end of exercise. The simultaneous visualization of two compartments, in good order, one with high pHi and fast recovery and another with low pHi and slow recovery, is rationalized by the different metabolic behavior of type I and II fibers in human calf muscle in response to exhaustive exercise. This study demonstrates that 31P-NMRS is an excellent noninvasive procedure to quantify aerobic metabolism in both fiber types simultaneously.  相似文献   

4.
In skeletal muscle, phosphocreatine (PCr) recovery from submaximal exercise has become a reliable and accepted measure of muscle oxidative capacity. During exercise, O2 availability plays a role in determining maximal oxidative metabolism, but the relationship between O2 availability and oxidative metabolism measured by 31P-magnetic resonance spectroscopy (MRS) during recovery from exercise has never been studied. We used 31P-MRS to study exercising human gastrocnemius muscle under conditions of varied fractions of inspired O2 (FIO2) to test the hypothesis that varied O2 availability modulates PCr recovery from submaximal exercise. Six male subjects performed three bouts of 5-min steady-state submaximal plantar flexion exercise followed by 5 min of recovery in a 1.5-T magnet while breathing three different FIO2 concentrations (0.10, 0. 21, and 1.00). Under each FIO2 treatment, the PCr recovery time constants were significantly different, being longer in hypoxia [33. 5 +/- 4.1 s (SE)] and shorter in hyperoxia (20.0 +/- 1.8 s) than in normoxia (25.0 +/- 2.7 s) (P 相似文献   

5.
This study evaluated the time courses of intracellular pH and the metabolism of phosphocreatine (PCr) and inorganic phosphate (P) at the onset of four exercise intensities and recoveries. Non-invasive evaluation of continuous changes in phosphorus metabolites has become possible using31P-nuclear magnetic resonance spectroscopy (31P-MRS). After measurements at rest, six healthy male subjects performed 4 min of femoral flexion exercise at intensities of 0 (loadless), 10, 20 and 30 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore. Measurements were continuously made during 5 min of recovery. During a series of rest-exercise-recovery procedures,31P-MRS were accumulated using 32 scans · spectrum–1 requiring 12.8 s each. At the onset of exercise, PCr decreased exponentially with a time constant of 27–32 s regardless of the exercise intensity. The time constant PCr resynthesis during recovery was about 27–40 s. The PCr kinetics were independent of exercise intensity. There were similar Pi kinetics at the onset of all types of exercise, while those of Pi recovery became significantly longer at the higher exercise intensities (P < 0.05). Furthermore, the intracellular pH indicated temporary alkalosis just at the onset of exercise, probably due to absorption of hydrogen ions by PCr hydrolysis, and then decrease at a point about 40%–50% of the preexercise PCr. The pH recovery time was longer than that for the Pi or PCr kinetics. By using a more efficient resolution system it was possible to obtain the phosphorus kinetics during exercise and to follow PCr resynthesis within the first few minutes of recovery. From our results it was concluded that in general the time course of PCr and Pi metabolism were unaffected by the exercise intensity, both at the onset of exercise and during recovery, with the exception of Pi recovery.  相似文献   

6.
Traditional control theories of muscle O2 consumption are based on an "inertial" feedback system operating through features of the ATP splitting (e.g., [ADP] feedback, where brackets denote concentration). More recently, however, it has been suggested that feedforward mechanisms (with respect to ATP utilization) may play an important role by controlling the rate of substrate provision to the electron transport chain. This has been achieved by activation of the pyruvate dehydrogenase complex via dichloroacetate (DCA) infusion before exercise. To investigate these suggestions, six men performed repeated, high-intensity, constant-load quadriceps exercise in the bore of an magnetic resonance spectrometer with each of prior DCA or saline control intravenous infusions. O2 uptake (Vo2) was measured breath by breath (by use of a turbine and mass spectrometer) simultaneously with intramuscular phosphocreatine (PCr) concentration ([PCr]), [Pi], [ATP], and pH (by 31P-MRS) and arterialized-venous blood sampling. DCA had no effect on the time constant (tau) of either Vo2 increase or PCr breakdown [tauVo2 45.5 +/- 7.9 vs. 44.3 +/- 8.2 s (means +/- SD; control vs. DCA); tauPCr 44.8 +/- 6.6 vs. 46.4 +/- 7.5 s; with 95% confidence intervals averaging < +/-2 s]. DCA, however, resulted in significant (P < 0.05) reductions in 1). end-exercise [lactate] (-1.0 +/- 0.9 mM), intramuscular acidification (pH, +0.08 +/- 0.06 units), and [Pi] (-1.7 +/- 2.1 mM); 2). the amplitude of the fundamental components for [PCr] (-1.9 +/- 1.6 mM) and Vo2 (-0.1 +/- 0.07 l/min, or 8%); and 3). the amplitude of the Vo2 slow component. Thus, although the DCA infusion lessened the buildup of potential fatigue metabolites and reduced both the aerobic and anaerobic components of the energy transfer during exercise, it did not enhance either tauVo2 or tau[PCr], suggesting that feedback, rather than feedforward, control mechanisms dominate during high-intensity exercise.  相似文献   

7.
We used phosphorus magnetic resonance spectroscopy to study the calf muscles of elderly normal (mean +/- SD) (80.0 +/- 5.12 years), elderly impaired (80.7 +/- 0.58 years), old normal (66.8 +/- 1.92 years), and young normal people (24.6 +/- 4.72 years). Relative levels of inorganic phosphate (Pi), phosphocreatine (PCr), and adenosine triphosphate were measured with a 1.9-tesla, 30-cm bore magnet at rest and following plantra flexon exercise. No differences were found at rest or during recovery from exercise in the elderly normal subjects with respect to gender or the presence of stable medical problems treated with medication. At rest there was an age-related decrease in the ratio of PCr/Pi. After exercise, the time constant of PCr recovery increased with age. A mild 7-week exercise regimen consisting of plantar flexion had no effect on time constant of PCr recovery in the elderly subjects. Four elderly impaired subjects had lower PCr/Pi ratios at rest and slower time constant of PCr recovery after exercise than normal elderly subjects. We conclude that gender and the presence of stable medical problems had no effect on muscle metabolism in the elderly and that the elderly recovered slower than young controls. This slower recovery was not corrected with a mild exercise program.  相似文献   

8.
To better understand the metabolic implications of a higher ATP cost of contraction in chronic obstructive pulmonary disease (COPD), we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to examine muscle energetics and pH in response to graded exercise. Specifically, in six patients and six well-matched healthy controls, we determined the intracellular threshold for pH (T(pH)) and inorganic phosphate-to-phosphocreatine ratio (T(Pi/PCr)) during progressive dynamic plantar flexion exercise with work rate expressed as both absolute and relative intensity. Patients with COPD displayed a lower peak power output (WRmax) compared with controls (controls 25 ± 4 W, COPD 15 ± 5 W, P = 0.01) while end-exercise pH (controls 6.79 ± 0.15, COPD 6.76 ± 0.21, P = 0.87) and PCr consumption (controls 82 ± 10%, COPD 70 ± 18%, P = 0.26) were similar between groups. Both T(pH) and T(Pi/PCr) occurred at a significantly lower absolute work rate in patients with COPD compared with controls (controls: 14.7 ± 2.4 W for T(pH) and 15.3 ± 2.4 W for T(Pi/PCr); COPD: 9.7 ± 4.5 W for T(pH) and 10.0 ± 4.6 W for T(Pi/PCr), P < 0.05), but these thresholds occurred at the same percentage of WRmax (controls: 63 ± 11% WRmax for T(pH) and 67 ± 18% WRmax for T(Pi/PCr); COPD: 59 ± 9% WRmax for T(pH) and 61 ± 12% WRmax for T(Pi/PCr), P > 0.05). Indexes of mitochondrial function, the PCr recovery time constant (controls 42 ± 7 s, COPD 45 ± 11 s, P = 0.66) and the PCr resynthesis rate (controls 105 ± 21%/min, COPD 91 ± 31%/min, P = 0.43) were similar between groups. In combination, these results reveal that when energy demand is normalized to WRmax, as a consequence of higher ATP cost of contraction, patients with COPD display the same metabolic pattern as healthy subjects, suggesting that skeletal muscle energy production is well preserved in these patients.  相似文献   

9.
Previously, it was demonstrated in exercise-trained humans that phosphocreatine (PCr) recovery is significantly altered by fraction of inspired O2 (FI(O2)), suggesting that in this population under normoxic conditions, O2 availability limits maximal oxidative rate. Haseler LJ, Hogan ML, and Richardson RS. J Appl Physiol 86: 2013-2018, 1999. To further elucidate these population-specific limitations to metabolic rate, we used 31P-magnetic resonance spectroscopy to study the exercising human gastrocnemius muscle under conditions of varied FI(O2) in sedentary subjects. To test the hypothesis that PCr recovery from submaximal exercise in sedentary subjects is not limited by O2 availability, but rather by their mitochondrial capacity, six sedentary subjects performed three bouts of 6-min steady-state submaximal plantar flexion exercise followed by 5 min of recovery while breathing three different FI(O2) (0.10, 0.21, and 1.00). PCr recovery time constants were significantly longer in hypoxia (47.0 +/- 3.2 s), but there was no difference between hyperoxia (31.8 +/- 1.9 s) and normoxia (30.0 +/- 2.1 s) (mean +/- SE). End-exercise pH was not significantly different across treatments. These results suggest that the maximal muscle oxidative rate of these sedentary subjects, unlike their exercise-trained counterparts, is limited by mitochondrial capacity and not O2 availability in normoxia. Additionally, the significant elongation of PCr recovery in these subjects in hypoxia illustrates the reliance on O2 supply at the other end of the O2 availability spectrum in both sedentary and active populations.  相似文献   

10.
We tested the hypothesis that the asymptote of the hyperbolic relationship between work rate and time to exhaustion during muscular exercise, the "critical power" (CP), represents the highest constant work rate that can be sustained without a progressive loss of homeostasis [as assessed using (31)P magnetic resonance spectroscopy (MRS) measurements of muscle metabolites]. Six healthy male subjects initially completed single-leg knee-extension exercise at three to four different constant work rates to the limit of tolerance (range 3-18 min) for estimation of the CP (mean +/- SD, 20 +/- 2 W). Subsequently, the subjects exercised at work rates 10% below CP (CP) for as long as possible, while the metabolic responses in the contracting quadriceps muscle, i.e., phosphorylcreatine concentration ([PCr]), P(i) concentration ([P(i)]), and pH, were estimated using (31)P-MRS. All subjects completed 20 min of CP exercise was 14.7 +/- 7.1 min. During CP exercise, however, [PCr] continued to fall to the point of exhaustion and [P(i)] and pH changed precipitously to values that are typically observed at the termination of high-intensity exhaustive exercise (end-exercise values = 26 +/- 16% of baseline [PCr], 564 +/- 167% of baseline [P(i)], and pH 6.87 +/- 0.10, all P < 0.05 vs. 相似文献   

11.
The rates of change in intracellular pH during repeated exercise sessions with rest periods was determined by 31 phosphorus-nuclear magnetic resonance spectroscopy (31P-MRS). Five long-distance runners and six healthy male subjects as controls performed a 2-min femoral flexion at 20 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore and repeated this exercise four times with 2-min rest periods intervening. In all cases during exercise the inorganic phosphate (Pi) peak split into two, the earlier increased rapidly (high-pH Pi) and the later (low-pH Pi) increased more slowly. The Pi peaks were separated by a fitting procedure using the least square mean method. The high-pH Pi area during exercise decreased as the number of repeated exercise periods increased, while the low-pH Pi area gradually increased. Although the total Pi area decreased exponentially during the recovery period, the high-pH Pi area decreased first and then the low-pH Pi area reduced gradually. The pH values were estimated from the chemical shift between the phosphocreatine peak and each split peak in the Pi. The high-pH in pooled data ranged from 6.6 to 7.0 during exercise and recovery, while the low pH decreased to 6.2 during exercise. As the number of exercise periods increased, each pH value gradually became less acidic, although there was a tendency to more acidity in the control subjects than in the long-distance runners. In conclusion, it was possible to obtain by non-invasive, continuous31P-MRS, a split pattern of Pi peaks during exercise and there were at least tow different intracellular pH values during exercise, suggesting that each Pi peak might be attributed to the types of muscle fibre recruited.  相似文献   

12.
The mechanism of muscle fatigue was studied by 31P-MRS. During tetanic contraction for 2 minutes(min), the tension measured with a strain gauge and Phosphocreatine(PCr)/Inorganic phosphate(Pi)+ Phosphomonoester(PME) ratio decreased to 31.5 +/- 4.4% of the control value and 0.6 +/- 0.1, respectively. The intracellular pH(pH) also decreased to 6.62 +/- 0.04. Toward the end of the stimulation, the tension decreased to 25.3 +/- 1.9% of the control value. However, during 20min stimulation, the PCr/(Pi+PME) ratio increased to 2.5 +/- 0.5 and the pH to 6.91 +/- 0.04. These results show that muscular fatigue is ascribable not to a decreased level of high energy metabolites required for actomyosin ATPase, but to an increase in the threshold intensity of excitation in excitation-contraction coupling.  相似文献   

13.
The splitting of muscle phosphocreatine (PCr) plays an integral role in the regulation of muscle O2 utilization during a "step" change in metabolic rate. This study tested the hypothesis that the kinetics of muscle PCr would be faster in children compared with adults both at the onset and offset of moderate-intensity exercise, in concert with the previous demonstration of faster phase II pulmonary O2 uptake kinetics in children. Eighteen peri-pubertal children (8 boys, 10 girls) and 16 adults (8 men, 8 women) completed repeated constant work-rate exercise transitions corresponding to 80% of the Pi/PCr intracellular threshold. The changes in quadriceps [PCr], [Pi], [ADP], and pH were determined every 6 s using 31P-magnetic resonance spectroscopy. No significant (P>0.05) age- or sex-related differences were found in the PCr kinetic time constant at the onset (boys, 21+/-4 s; girls, 24+/-5 s; men, 26+/-9 s; women, 24+/-7 s) or offset (boys, 26+/-5 s; girls, 29+/-7 s; men, 23+/-9 s; women 29+/-7 s) of exercise. Likewise, the estimated theoretical maximal rate of oxidative phosphorylation (Qmax) was independent of age and sex (boys, 1.39+/-0.20 mM/s; girls, 1.32+/-0.32 mM/s; men, 2.36+/-1.18 mM/s; women, 1.51+/-0.53 mM/s). These results are consistent with the notion that the putative phosphate-linked regulation of muscle O2 utilization is fully mature in peri-pubertal children, which may be attributable to a comparable capacity for mitochondrial oxidative phosphorylation in child and adult muscle.  相似文献   

14.

Background

Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism.

Methodology/Principal Findings

We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition.

Conclusions/Significance

Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself.  相似文献   

15.
The purpose of this study was to examine with (31)P-magnetic resonance spectroscopy energy metabolism during repeated plantar flexion isometric exercise (Ex-1-Ex-4) at 32 +/- 1 and 79 +/- 4% of maximal voluntary contraction (MVC) before and during a creatine (Cr) feeding period of 5 g/day for 11 days. Eight trained male subjects participated in the study. ATP was unchanged with Cr supplementation at rest and during exercise at both intensities. Resting muscle phosphocreatine (PCr) increased (P < 0.05) from 18.3 +/- 0.9 (before) to 19.6 +/- 1.0 mmol/kg wet wt after 9 days. At 79% MVC, PCr used, P(i) accumulated, and pH at the end of Ex-1-Ex-4 were similar after 4 and 11 days of Cr supplementation. In contrast, PCr utilization and P(i) accumulation were lower and pH was higher for exercise at 32% MVC with Cr supplementation, suggesting aerobic resynthesis of PCr was more rapid during exercise. These results suggest that elevating muscle Cr enhances oxidative phosphorylation during mild isometric exercise, where it is expected that oxygen delivery matches demands and predominantly slow-twitch motor units are recruited.  相似文献   

16.
秦斌  齐静 《生物磁学》2011,(1):176-179
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

17.
We used (31)P-magnetic resonance spectroscopy to study proton buffering in finger flexor muscles of eight healthy men (25-45 yr), during brief (18-s) voluntary finger flexion exercise (0.67-Hz contraction at 10% maximum voluntary contraction; 50/50 duty cycle) and 180-s recovery. Phosphocreatine (PCr) concentration fell 19 +/- 2% during exercise and then recovered with half time = 0.24 +/- 0.01 min. Cell pH rose by 0.058 +/- 0.003 units during exercise as a result of H(+) consumption by PCr splitting, which (assuming no lactate production or H(+) efflux) implies a plausible non-P(i) buffer capacity of 20 +/- 3 mmol. l intracellular water(-1). pH unit(-1). There was thus no evidence of significant glycogenolysis to lactate during exercise. Analysis of PCr kinetics as a classic linear response suggests that oxidative ATP synthesis reached 48 +/- 2% of ATP demand by the end of exercise; the rest was met by PCr splitting. Postexercise pH recovery was faster than predicted, suggesting "excess proton" production, with a peak value of 0.6 +/- 0.2 mmol/l intracellular water at 0.45 min of recovery, which might be due to, e.g., proton influx driven by cellular alkalinization, or a small glycolytic contribution to PCr resynthesis in recovery.  相似文献   

18.
In contrast to their exercise-trained counterparts, the maximal oxidative rate of skeletal muscle in sedentary humans appears not to benefit from supplemental O(2) availability but is impacted by severe hypoxia, suggesting a metabolic limitation either at or below ambient O(2) levels. However, the critical level of O(2) availability at which maximal metabolic rate is reduced in sedentary humans is unknown. Using (31)P magnetic resonance spectroscopy and arterial oximetry, phosphocreatine (PCr) recovery kinetics and arterial oxygenation were assessed in six sedentary subjects performing 5-min bouts of plantar flexion exercise followed by 6 min of recovery. Each trial was repeated while breathing one of four different fractions of inspired O(2) (FI(O(2))) (0.10, 0.12, 0.15, and 0.21). The PCr recovery rate constant (a marker of oxidative capacity) was unaffected by reductions in FI(O(2)), remaining at a value of 1.5 +/- 0.2 min(-1) until arterial O(2) saturation (Sa(O(2))) fell to less than approximately 92%, the average value reached breathing an FI(O(2)) of 0.15. Below this Sa(O(2)), the PCr rate constant fell significantly by 13 and 31% to 1.3 +/- 0.2 and 1.0 +/- 0.2 min(-1) (P < 0.05) as Sa(O(2)) was reduced to 82 +/- 3 and 77 +/- 2%, respectively. In conclusion, this study has revealed that O(2) availability does not impact maximal oxidative rate in sedentary humans until the O(2) level falls well below that of ambient air, indicating a metabolic limitation in normoxia.  相似文献   

19.
ObjectiveTo study the effects of L-arginine (L-Arg) on total body aerobic capacity and muscle metabolism as assessed by 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) syndrome.MethodsWe performed a case control study in 3 MELAS siblings (m.3243A>G tRNAleu(UUR) in MTTL1 gene) with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO2peak) using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine.ResultsAt baseline (no L-Arg), MELAS had lower serum Arg (p = 0.001). On 31P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr) (p = 0.05), decreased ATP (p = 0.018), and decreased intracellular Mg2+ (p = 0.0002) when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1) increase in mean % maximum work at anaerobic threshold (AT) (2) increase in % maximum heart rate at AT (3) small increase in VO2peak. On 31P-MRS the following mean trends were noted: (1) A blunted decrease in pH after exercise (less acidosis) (2) increase in Pi/PCr ratio (ADP) suggesting increased work capacity (3) a faster half time of PCr recovery (marker of mitochondrial activity) following 5 minutes of moderate intensity exercise (4) increase in torque.SignificanceThese results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study.

Classification of Evidence

Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects.

Trial Registration

ClinicalTrials.gov NCT01603446.  相似文献   

20.
Previous studies have suggested the recovery of phosphocreatine (PCr) after exercise is at least second-order in some conditions. Possible explanations for higher-order PCr recovery kinetics include heterogeneity of oxidative capacity among skeletal muscle fibers and ATP production via glycolysis contributing to PCr resynthesis. Ten human subjects (28 +/- 3 yr; mean +/- SE) performed gated plantar flexion exercise bouts consisting of one contraction every 3 s for 90 s (low-intensity) and three contractions every 3 s for 30 s (high-intensity). In a parallel gated study, the sciatic nerve of 15 adult male Sprague-Dawley rats was electrically stimulated at 0.75 Hz for 5.7 min (low intensity) or 5 Hz for 2.1 min (high intensity) to produce isometric contractions of the posterior hindlimb muscles. [(31)P]-MRS was used to measure relative [PCr] changes, and nonnegative least-squares analysis was utilized to resolve the number and magnitude of exponential components of PCr recovery. Following low-intensity exercise, PCr recovered in a monoexponential pattern in humans, but a higher-order pattern was typically observed in rats. Following high-intensity exercise, higher-order PCr recovery kinetics were observed in both humans and rats with an initial fast component (tau < 15 s) resolved in the majority of humans (6/10) and rats (5/8). These findings suggest that heterogeneity of oxidative capacity among skeletal muscle fibers contributes to a higher-order pattern of PCr recovery in rat hindlimb muscles but not in human triceps surae muscles. In addition, the observation of a fast component following high-intensity exercise is consistent with the notion that glycolytic ATP production contributes to PCr resynthesis during the initial stage of recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号