首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The VirD2 protein of Agrobacterium tumefaciens was shown to pilot T-DNA during its transfer to the plant cell nucleus. We analyze here its participation in the integration of T-DNA by using a virD2 mutant. This mutation reduces the efficiency of T-DNA transfer, but the efficiency of integration of T-DNA per se is unaffected. Southern and sequence analyses of integration events obtained with the mutated VirD2 protein revealed an aberrant pattern of integration. These results indicate that the wild-type VirD2 protein participates in ligation of the 5'-end of the T-strand to plant DNA and that this ligation step is not rate limiting for T-DNA integration.  相似文献   

2.
Agrobacterium tumefaciens is able to transfer a piece of DNA, the T-DNA, to the nucleus of the plant cell. The VirD2 protein is required for the production of the T-DNA, it is tightly linked to the T-DNA and it is thought to direct it to the plant genome. Two nuclear localization signals (NLS), one in the N-terminal part and one in the C-terminal part of the VirD2 protein, have been shown to be able to target marker proteins to the plant nucleus. Here we analyze nuclear entry of the T-DNA complex using a new and very sensitive assay for T-DNA transfer. We show that optimal T-DNA transfer requires the VirD2 NLS located in the C-terminal part of the protein, whereas mutations in the N-terminal NLS coding sequence seem to have no effect on T-DNA transfer.  相似文献   

3.
Agrobacterium tumefaciens elicits tumorous growths on plants by transforming plant cells with a segment of its own DNA. This trait led to development of Agrobacterium as a vector for genetic transformation of flowering plants. The transformation process is a unique mixture of several distinct steps, some of which are evolutionarily and functionally related to bacterial conjugation, and some of which converge with eukaryotic cellular processes. Recent work has advanced our understanding of each of these steps. The early reactions in the production of an ssDNA transfer intermediate (T-strand), mediated by the VirD1/D2 proteins, are chemically similar to formation of a relaxosome in bacterial conjugation. The T-strand is coated by the ssDNA binding protein VirE2; however, whether this binding occurs in the bacterium or in planta is disputed. VirB proteins, related to proteins for the conjugal transfer of DNA between bacteria, most likely form the transfer apparatus. VirD2, which remains covalently bound to the 5′ end of the T-strand, and VirE2 both localize to the nucleus of plant cells. VirE2 also mediates the nuclear accumulation of ssDNA but only when the protein is bound to the ssDNA. Genetically, VirD2 is required for faithful integration of the 5′ end and VirE2 for the 3′ end of the T-strand. The steps of the process currently under active investigation are the assembly of the export apparatus and the enzymology of integration.  相似文献   

4.
Agrobacterium tumefaciens is able to transfer a piece of DNA, the T-DNA, to the nucleus of the plant cell. The VirD2 protein is required for the production of the T-DNA, it is tightly linked to the T-DNA and it is thought to direct it to the plant genome. Two nuclear localization signals (NLS), one in the N-terminal part and one in the C-terminal part of the VirD2 protein, have been shown to be able to target marker proteins to the plant nucleus. Here we analyze nuclear entry of the T-DNA complex using a new and very sensitive assay for T-DNA transfer. We show that optimal T-DNA transfer requires the VirD2 NLS located in the C-terminal part of the protein, whereas mutations in the N-terminal NLS coding sequence seem to have no effect on T-DNA transfer.  相似文献   

5.
The transferred DNA (T-DNA) is transported from Agrobacterium tumefaciens to the nucleus and is stably integrated into the genome of many plant species. It has been proposed that the VirD2 protein, tightly attached to the T-DNA, pilots the T-DNA into the plant cell nucleus and that it is involved in integration. Using agroinfection and beta-glucuronidase expression as two different very sensitive transient assays for T-DNA transfer, together with assays for stable integration, we have shown that the C-terminal half of the VirD2 protein and the VirD3 protein are not involved in T-DNA integration. However, the bipartite nuclear localization signal, which is located within the C terminus of the VirD2 protein and which has previously been shown to be able to target a foreign protein into the plant cell nucleus, was shown to be required for efficient T-DNA transfer. virD4 mutants were shown by agroinfection to be completely inactive in T-DNA transfer.  相似文献   

6.
Induction of Ti plasmid virulence (vir) genes during early stages of the genetic transformation of plant cells by Agrobacterium tumefaciens results in several molecular events that are involved in generating a transferable T-DNA copy. These events include site-specific nicking at the T-DNA borders and synthesis of free, unipolar, linear, single-stranded copies of the T-DNA (T-strands). Here E. coli was used as a heterologous cell to assay the requirements for T-strand synthesis. Cells of E. coli harbored two compatible plasmids, one containing coding sequences overlapping the virC and virD regions of the nopaline Ti plasmid, and a second plasmid containing a T-DNA region. The amount of vir proteins produced was varied by placing their expression under the control of either native Agrobacterium, tac, or T7 promoters. The data show that VirD1 and VirD2 proteins are absolutely essential for T-strand production in E. coli, and the relative amounts of these polypeptides produced correlate with the amounts of T-strand observed. When VirD1 and VirD2 products are limiting, the VirC1 protein increases T-strand production. The yield of T-strands also varies as a function of the plasmid vector used to clone the T-DNA region substrate; the same T-DNA cloned into pLAFR1 produces more T-strands than that cloned into the higher copy number plasmid pACYC184. In summary, VirD1 and VirD2 proteins are the minimal requirements for T-strand production; however, other factors such as VirC1, the relative concentration of VirD1, VirD2, and the T-DNA substrate, and possibly additional functions (e.g., those specified by pLAFR1) influence the efficiency of T-strand production. Additional results regarding the requirements for expression of VirD1 and VirD2 polypeptides are presented.  相似文献   

7.
Agrobacterium VirE2 gets the VIP1 treatment in plant nuclear import.   总被引:1,自引:0,他引:1  
Agrobacterium tumefaciens transforms plant cells by targeting a large single-stranded DNA molecule (T-strand) to the plant nucleus. The host cell contribution to nuclear import and transformation is the focus of several current articles. Recently, plant proteins have been identified that promote nuclear import of the T-strand. In particular, VIP1 might couple transformation to the importin-dependent nuclear import pathway and deliver the T-strand to chromatin, thereby promoting integration into the host genome.  相似文献   

8.
Wild-type VirE2 and VirD2 proteins from Agrobacterium tumefaciens contain nuclear targeting sequences (NLS) that are likely involved in directing transferred T strands to the plant nucleus. An A. tumefaciens virE2 virD2ΔNLS double mutant was able to form tumors on VirE2-producing transgenic tobacco but not on wild-type tobacco. Because this mutant bacterial strain contains no known T-strand nuclear targeting signal, the data indicate that wild-type VirE2 proteins produced by the plant can interact with the T strands in the plant cytoplasm and direct them to the nucleus.  相似文献   

9.
We used Agrobacterium T-DNA nuclear transport to examine the specificity of nuclear targeting between plants and animals and the nuclear import of DNA by a specialized transport protein. Two karyophilic Agrobacterium virulence (Vir) proteins, VirD2 and VirE2, which presumably associate with the transported T-DNA and function in many plant species, were microinjected into Drosophila embryos and Xenopus oocytes. In both animal systems, VirD2 localized to the cell nuclei and VirE2 remained exclusively cytoplasmic, suggesting that VirE2 nuclear localization signals may be plant specific. Repositioning one amino acid residue within VirE2 nuclear localization signals enabled them to function in animal cells. The modified VirE2 protein bound DNA and actively transported it into the nuclei of Xenopus oocytes. These observations suggest a functional difference in nuclear import between animals and plants and show that DNA can be transported into the cell nucleus via a protein-specific pathway.  相似文献   

10.
Agrobacterium tumefaciens transfers DNA from the resident 'tumour-inducing' (Ti) plasmid into plant cells, where it can be stably integrated into the plant genome, ultimately resulting in crown gall tumour formation. The mobilized DNA molecule is a single-stranded intermediate with VirD2 covalently bound to its 5' end. Successful transport of the transferred DNA (T-DNA) and integration of the DNA into the genome requires that additional proteins be transported to the plant as well, including the single-stranded (ss)DNA-binding protein, VirE2. The transport of these two different substrates occurs as a result of the activities of a type IV secretion system encoded by the virB operon. Although the substrates have been identified, the mechanism of their transport remains unknown. In the experiments described here, a region in one of these substrates, VirE2, necessary for transport is identified. The addition of a C-terminal FLAG epitope tag to VirE2, or the deletion of its C-terminal 18 amino acids, renders it non-functional in A. tumefaciens. However, transgenic plants expressing either of these virE2 genes respond to virE2 mutants of A. tumefaciens by forming wild-type tumours. These results indicate that this region of VirE2 is necessary for the protein to be transported into the plant cells, but is not necessary for its function within the plant. Additionally, these studies demonstrate that mutant forms of VirE2 lacking this region do not disrupt the activities of the VirB transporter and support the hypothesis that VirE2 and the VirD2 T-strand are transported independently, even when they co-exist in the same cell.  相似文献   

11.
The T-DNA transfer process of Agrobacterium tumefaciens is activated by the induction of the Ti plasmid virulence (vir) loci by plant signal molecules such as acetosyringone. Upon initiation of the T-DNA transfer process, site-specific nicks occur at the 25-bp border sequences. This cleavage leads to the generation of a free, linear ssT-DNA molecule which is bound by sequence non-specific VirE proteins. Here we present evidence for the involvement of other acetosyringone-induced proteins in the formation of a covalent complex between the T-strand and protein, designated the T-complex. Alkaline gel-electrophoretic analysis showed that proteins specifically bind to the 5' termini of nicked T-DNA molecules. The T-complex can be formed in Escherichia coli when the VirD1 and VirD2 proteins are expressed.  相似文献   

12.
The matrix (M) protein of vesicular stomatitis virus (VSV) functions from within the nucleus to inhibit bi-directional nucleocytoplasmic transport. Here, we show that M protein can be imported into the nucleus by an active transport mechanism, even though it is small enough (approximately 27 kDa) to diffuse through nuclear pore complexes. We map two distinct nuclear localization signal (NLS)-containing regions of M protein, each of which is capable of directing the nuclear localization of a heterologous protein. One of these regions, comprising amino acids 47-229, is also sufficient to inhibit nucleocytoplasmic transport. Two amino acids that are conserved among the matrix proteins of vesiculoviruses are important for nuclear localization, but are not essential for the inhibitory activity of M protein. Thus, different regions of M protein function for nuclear localization and for inhibitory activity.  相似文献   

13.
Mutagenesis experiments were used to identify functionally important regions of Agrobacterium tumefaciens pTiA6 VirD1. Random mutations were introduced by using Taq polymerase in a mutagenic reaction buffer containing manganese and altered nucleotide ratios to increase errors during the polymerase chain reaction (PCR). The mutants were assayed for VirD1-, VirD2-dependent border-nicking activity in Escherichia coli harbouring a border-containing substrate plasmid. Analysis of the mutants led to the identification of a region from amino acids 45–60 that is important for VirD1 activity. This region corresponds to a previously postulated potential DNA-binding domain. Deletion mutagenesis indicated that amino acids 2–16 could be deleted without affecting VirD1 function, whereas a larger deletion, amino acids 5–27, completely inactivated VirD1.  相似文献   

14.
Agrobacterium tumefaciens VirD2 polypeptide, in the presence of VirD1, catalyzes a site- and strand-specific nicking reaction at the T-DNA border sequences. VirD2 is found tightly attached to the 5' end of the nicked DNA. The protein-DNA complex is presumably formed via a tyrosine residue of VirD2 (F. Durrenberger, A. Crameri, B. Hohn, and Z. Koukolikova-Nicola, Proc. Natl. Acad. Sci. USA 86:9154-9158, 1989). A mutational approach was used to study whether a tyrosine residue(s) of VirD2 is required for its activity. By site-specific mutagenesis, a tyrosine (Y) residue at position 29, 68, 99, 119, 121, 160, or 195 of the octopine Ti plasmid pTiA6 VirD2 was altered to phenylalanine (F). The Y-29-F or Y-121-F mutation completely abolished nicking activity of VirD2 in vivo in Escherichia coli. Two other substitutions, Y-68-F and Y-160-F, drastically reduced VirD2 activity. A substitution at position 99, 119, or 195 had no effect on VirD2 activity. Additional mutagenesis experiments showed that at position 29, no other amino acid could substitute for tyrosine without destroying VirD2 activity. At position 121, only a tryptophan (W) residue could be substituted. This, however, yielded a mutant protein with significantly reduced VirD2 activity. The nicked DNA from strains bearing a Y-68-F, Y-99-F, Y-119-F, Y-160-F, Y-195-F, or Y-121-W mutation in VirD2 was always found to contain a tightly linked protein.  相似文献   

15.
Proteins destined for the nucleus contain nuclear localization sequences, short stretches of amino acids responsible for targeting them to the nucleus. We show that the first 29 amino acids of GAL4, a yeast DNA-binding protein, function efficiently as a nuclear localization sequence when fused to normally cytoplasmic invertase, but not when fused to Escherichia coli beta-galactosidase. Moreover, the nuclear localization sequence from simian virus 40 T antigen functions better when fused to invertase than when fused to beta-galactosidase. A single amino acid change in the T-antigen nuclear localization sequence inhibits the nuclear localization of simian virus 40-invertase and simian virus 40-beta-galactosidase in Saccharomyces cerevisiae. From these results, we conclude that the relative ability of a nuclear localization sequence to act depends on the protein to which it is linked.  相似文献   

16.
T Tzfira  M Vaidya  V Citovsky 《The EMBO journal》2001,20(13):3596-3607
T-DNA nuclear import is a central event in genetic transformation of plant cells by Agrobacterium. This event is thought to be mediated by two bacterial proteins, VirD2 and VirE2, which are associated with the transported T-DNA molecule. While VirD2 is imported into the nuclei of plant, animal and yeast cells, nuclear uptake of VirE2 occurs most efficiently in plant cells. To understand better the mechanism of VirE2 action, a cellular interactor of VirE2 was identified and its encoding gene cloned from Arabidopsis. The identified plant protein, designated VIP1, specifically bound VirE2 and allowed its nuclear import in non-plant systems. In plants, VIP1 was required for VirE2 nuclear import and Agrobacterium tumorigenicity, participating in early stages of T-DNA expression.  相似文献   

17.
During the initial stages of crown gall tumorigenesis, the T-DNA region of the Agrobacterium tumefaciens Ti-plasmid is processed, resulting in the production of T-DNA molecules that are subsequently transferred to the plant cell. Processing of the T-DNA in the bacterium involves the nicking of T-DNA border sequences by an endonuclease encoded by the virD locus, and the subsequent tight (possibly covalent) association of the VirD2 protein with the 5′ end of the processed single-stranded or double-stranded T-DNA molecule. To investigate the interaction of the VirD1,D2 endonuclease with a right T-DNA border, a set of plasmids containing both the border and virD sequences on the same high-copy-number replicon has been constructed and introduced into Escherichia coli. In this model system a tight nucleoprotein complex is formed between the relaxed double-stranded substrate plasmid and the VirD2 protein. This putative T-DNA processing complex may be analogous to the covalent relaxation complex formed between the pilot protein and plasmid DNA during bacterial conjugation. VirD2 attachment to the relaxed substrate plasmid was resistant to denaturing agents but sensitive to S1 nuclease digestion, indicating a single-stranded region near the site of protein attachment. We speculate that this structure may be an intermediate formed prior to T-strand unwinding from the substrate plasmid in a host bacterium.  相似文献   

18.
Epidermal keratinocyte differentiation is accompanied by differential regulation of E2F genes, including up-regulation of E2F-5 and its concomitant association with the retinoblastoma family protein p130. This complex appears to play a role in irreversible withdrawal from the cell cycle in differentiating keratinocytes. We now report that keratinocyte differentiation is also accompanied by changes in E2F-5 subcellular localization, from the cytoplasm to the nucleus. To define the molecular determinants of E2F-5 nuclear import, we tested its ability to enter the nucleus in import assays in vitro using digitonin-permeabilized cells. We found that E2F-5 enters the nucleus through mediated transport processes that involve formation of nuclear pore complexes. It has been proposed that E2F-4 and E2F-5, which lack defined nuclear localization signal (NLS) consensus sequences, enter the nucleus in association with NLS-containing DP-2 or pRB family proteins. However, we show that nuclear import of E2F-5 only requires the first N-terminal 56 amino acid residues and is not dependent on interaction with DP or pRB family proteins. Because E2F-5 is predominantly cytoplasmic in undifferentiated keratinocytes and in other intact cells, we also examined whether this protein is subjected to active nuclear export. Indeed, E2F-5 is exported from the nucleus through leptomycin B-sensitive, CRM1-mediated transport, through a region corresponding to amino acid residues 130-154. This region excludes the DNA- and the p130-binding domains. Thus, the subcellular distribution of E2F-5 is tightly regulated in intact cells, through multiple functional domains that direct nucleocytoplasmic shuttling of this protein.  相似文献   

19.
To study the mechanism of nuclear import of T-DNA, complexes consisting of the virulence proteins VirD2 and VirE2 as well as single-stranded DNA (ssDNA) were tested for import into plant nuclei in vitro. Import of these complexes was fast and efficient and could be inhibited by a competitor, a nuclear localization signal (NLS) coupled to BSA. For import of short ssDNA, VirD2 was sufficient, whereas import of long ssDNA additionally required VirE2. A VirD2 mutant lacking its C-terminal NLS was unable to mediate import of the T-DNA complexes into nuclei. Although free VirE2 molecules were imported into nuclei, once bound to ssDNA they were not imported, implying that when complexed to DNA, the NLSs of VirE2 are not exposed and thus do not function. RecA, another ssDNA binding protein, could substitute for VirE2 in the nuclear import of T-DNA but not in earlier events of T-DNA transfer to plant cells. We propose that VirD2 directs the T-DNA complex to the nuclear pore, whereas both proteins mediate its passage through the pore. Therefore, by binding to ssDNA, VirE2 may shape the T-DNA complex such that it is accepted for translocation into the nucleus.  相似文献   

20.
Agrobacterium tumefaciens and Agrobacterium rhizogenes are related pathogens that cause crown gall and hairy root diseases, which result from integration and expression of bacterial genes in the plant genome. Single-stranded DNA (T strands) and virulence proteins are translocated into plant cells by a type IV secretion system. VirD2 nicks a specific DNA sequence, attaches to the 5′ end, and pilots the DNA into plant cells. A. tumefaciens translocates single-stranded DNA-binding protein VirE2 into plant cells where it likely binds T strands and may aid in targeting them into the nucleus. Although some A. rhizogenes strains lack VirE2, they transfer T strands efficiently due to the GALLS gene, which complements an A. tumefaciens virE2 mutant for tumor formation. Unlike VirE2, full-length GALLS (GALLS-FL) contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. GALLS-FL and VirE2 contain nuclear localization signals (NLS) and secretion signals. Mutations in any of these domains abolish the ability of the GALLS gene to substitute for virE2. Here, we show that the GALLS gene encodes two proteins from one open reading frame: GALLS-FL and a protein comprised of the C-terminal domain, which initiates at an internal in-frame start codon. On some hosts, both GALLS proteins were required to substitute for VirE2. GALLS-FL tagged with yellow fluorescent protein localized to the nucleus of tobacco cells in an NLS-dependent manner. In plant cells, the GALLS proteins interacted with themselves, VirD2, and each other. VirD2 interacted with GALLS-FL and localized inside the nucleus, where its predicted helicase activity may pull T strands into the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号