首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthetic analogs of green tea polyphenols as proteasome inhibitors   总被引:2,自引:0,他引:2  
BACKGROUND: Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (-)-epigallocatechin-3-gallate [(-)-EGCG] and (-)-gallocatechin-3-gallate [(-)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (-)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study. MATERIALS AND METHODS: GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, I kappa B-alpha and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G(1) arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay. RESULTS: (+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IkappaB-alpha proteins, associated with an increased G(1) population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing high basal levels of Bax, but not prostate cancer DU-145 cells with low Bax expression. Finally, synthetic GTPs significantly inhibited colony formation by LNCaP cancer cells. CONCLUSIONS: Enantiomeric analogs of natural GTPs, (+)-EGCG and (+)-GCG, are able to potently and specifically inhibit the proteasome both, in vitro and in vivo, while protection of the hydroxyl groups on (+)-EGCG renders the compound completely inactive.  相似文献   

2.
3.
Under physiological conditions, biotransformation reactions, such as methylation, can modify green tea polyphenols (GTPs) and therefore limit their in vivo cancer-preventive activity. Although a recent study suggested that methylated polyphenols are less cancer-protective, the molecular basis is unknown. We previously reported that ester bond-containing GTPs, for example (-)-epigallocatechin-3-gallate [(-)-EGCG] or (-)-epicatechin-3-gallate [(-)-ECG], potently and specifically inhibit the proteasomal chymotrypsin-like activity. In this study, we hypothesize that methylated GTPs have decreased proteasome-inhibitory abilities. To test this hypothesis, methylated (-)-EGCG and (-)-ECG analogs that can be found in vivo were synthesized and studied for their structure-activity relationships (SARs) using a purified 20S proteasome. The addition of a single methyl group on (-)-EGCG or (-)-ECG led to decreased proteasome inhibition and, as the number of methyl groups increased, the inhibitory potencies further decreased. These SARs were supported by our findings from in silico docking analysis published recently. Previously, we synthesized a peracetate-protected (-)-EGCG molecule, Pro-EGCG (1), to enhance its cellular permeability and stability, and current HPLC analysis confirms conversion of Pro-EGCG (1) to (-)-EGCG in cultured human leukemic Jurkat T cells. Furthermore, in this study, peracetate-protected forms of methylated GTPs were added in intact Jurkat T cells to observe the intracellular effects of methylation. Peracetate-protected, monomethylated (-)-EGCG induced greater cellular proteasome inhibition and apoptosis than did peracetate-protected, trimethylated (-)-EGCG, consistent with the potencies of the parent methylated analogs against a purified 20S proteasome. Therefore, methylation on GTPs, under physiological conditions, could decrease their proteasome-inhibitory activity, contributing to decreased cancer-preventive effects of tea consumption.  相似文献   

4.
5.
Smith DM  Daniel KG  Wang Z  Guida WC  Chan TH  Dou QP 《Proteins》2004,54(1):58-70
Previously, we demonstrated that natural and synthetic ester bond-containing green tea polyphenols were potent and specific non-peptide proteasome inhibitors. However, the molecular mechanism of inhibition is currently unknown. Here, we report that inhibition of the chymotrypsin activity of the 20S proteasome by (-)-epigallocatechin-3-gallate (EGCG) is time-dependent and irreversible, implicating acylation of the beta5-subunit's catalytic N-terminal threonine (Thr 1). This knowledge is used, along with in silico docking experiments, to aid in the understanding of binding and inhibition. On the basis of these docking experiments, we propose that (-)-EGCG binds the chymotrypsin site in an orientation and conformation that is suitable for a nucleophilic attack by Thr 1. Consistently, the distance from the electrophilic carbonyl carbon of (-)-EGCG to the hydroxyl group of Thr 1 was measured as 3.18 A. Furthermore, the A ring of (-)-EGCG acts as a tyrosine mimic, binding to the hydrophobic S1 pocket of the beta5-subunit. In the process, the (-)-EGCG scissile bond may become strained, which could lower the activation energy for attack by the hydroxyl group of Thr 1. This model is validated by comparison of predicted and actual activities of several EGCG analogs, either naturally occurring, previously synthesized, or rationally synthesized.  相似文献   

6.
Tea polyphenols, their biological effects and potential molecular targets   总被引:1,自引:0,他引:1  
Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity.  相似文献   

7.
Inhibitory effects of green tea catechins and their derivatives on the matrilysin-catalyzed hydrolysis of a synthetic substrate, (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diamino-propionyl]-L-Ala-L-Arg-NH(2) [MOCAc-PLGL(Dpa)AR], were examined. The 10 catechins examined were classified into three groups according to their inhibition potency. Catechins with a galloyl group at the 3 position, including a major component of green tea catechin, (-)-epigallo-3-catechin gallate [(-)-EGCG], were the most potent inhibitors and inhibited matrilysin in a non-competitive manner with K(i) values of 0.47-1.65 micro M. The inhibitory potency of (-)-EGCG was not influenced by the presence of an inhibitor, ZnCl(2), suggesting that the inhibitions of matrilysin by (-)-EGCG and by ZnCl(2) might be independent of each other. The inhibitory effects of green tea catechins suggest that a high intake of green tea might be effective for the prevention of tumor metastasis and invasion in which matrilysin is concerned.  相似文献   

8.
The green tea polyphenol catechin-3-gallate (CG) and epicatechin-3-gallate (ECG) were synthesized enantioselectively via a Sharpless hydroxylation reaction followed by a diastereoselective cyclization. Their potencies to inhibit the proteasome activity were measured. The unnatural enantiomers were found to be equally potent to the natural compounds.  相似文献   

9.
Flavonoids are polyphenolic compounds widely distributed in the plant kingdom. Compelling research indicates that flavonoids have important roles in cancer chemoprevention and chemotherapy possibly due to biological activities that include action through anti-inflammation, free radical scavenging, modulation of survival/proliferation pathways, and inhibition of the ubiquitin-proteasome pathway. Plant polyphenols including the green tea polyphenol (-)-epigallocatechin gallate or (-)-EGCG, and the flavonoids apigenin, luteolin, quercetin, and chrysin have been shown to inhibit proteasome activity and induce apoptosis in human leukemia cells. However, biotransformation reactions to the reactive hydroxyl groups on polyphenols could reduce their biological activities. Although methylated polyphenols have been suggested to be metabolically more stable than unmethylated polyphenols, the practical use of methylated polyphenols as cancer preventative agents warrants further investigation. In the current study, methylated and unmethylated flavonoids were studied for their proteasome-inhibitory and apoptosis-inducing abilities in human leukemia HL60 cells. Methylated flavonoids displayed sustained bioavailability and inhibited cellular proliferation by arresting cells in the G(1) phase. However, they did not act as proteasome inhibitors in either an in vitro system or an in silico model and only weakly induced apoptosis. In contrast, unmethylated flavonoids exhibited inhibition of the proteasomal activity in intact HL60 cells, accumulating proteasome target proteins and inducing caspase activation and poly(ADP-ribose) polymerase cleavage. We conclude that methylated flavonoids lack potent cytotoxicity against human leukemia cells and most likely have limited ability as chemopreventive agents.  相似文献   

10.
Epigallocatechin-3-gallate (EGCG), the major green tea polyphenol, can reach the brain following oral intake and could thus act as an anti-tumoral agent targeting several key steps of brain cancer cells invasive activity. Because integrin-mediated extracellular matrix recognition is crucial during the cell adhesion processes involved in carcinogenesis, we have investigated the effects of EGCG on different cellular integrins of the pediatric brain tumor-derived medulloblastoma cell line DAOY. Using flow cytometry, we report the levels of expression of several cell surface integrins in DAOY. These include high expression of alpha2, alpha3, and beta1 integrins, as well as alphav and beta3 integrins. Moreover, we provide evidence that EGCG can antagonize DAOY cell migration specifically on collagen by increasing cell adhesive ability through specific gene and protein upregulation of the beta1 integrin subunit. Our results suggest that this naturally occurring green tea polyphenol may thus be used as a nutraceutical therapeutic agent in targeting the invasive character of medulloblastomas.  相似文献   

11.
Analogs of (-)-EGCG containing a para-amino group on the D-ring in place of the hydroxyl groups have been synthesized and their proteasome inhibitory activities were studied. We found that, the O-acetylated (-)-EGCG analogs possessing a p-NH(2) or p-NHBoc (Boc; tert-butoxycarbonyl) D-ring (5 and 7) act as novel tumor cellular proteasome inhibitors and apoptosis inducers with potency similar to natural (-)-EGCG and similar to (-)-EGCG peracetate. These data suggest that the acetylated amino-GTP analogs have the potential to be developed into novel anticancer agents.  相似文献   

12.
Matsuoka K  Isowa N  Yoshimura T  Liu M  Wada H 《Cytokine》2002,18(5):266-273
Reactive oxygen species (ROS) play crucial roles in ischemia-reperfusion (IR) injury of lung transplants. Reactive oxygen species may stimulate the production of neutrophil chemotactic factors such as interleukin-8 (IL-8), from alveolar epithelial cells, causing recruitment and activation of neutrophils in the reperfused tissue. Green tea polyphenol has potent anti-oxidative activities and anti-inflammatory effects by decreasing cytokine production. In the present study, we found that green tea polyphenol significantly inhibited IL-8 production induced by hydrogen peroxide (H(2)O(2)) in human lung alveolar epithelial cells (A549 line). It has been shown that mitogen activated protein kinases, such as Jun N-terminal kinase (JNK), p38 and p44/42, could mediate IL-8 production from a variety of cell types. We further investigated the effect of green tea polyphenol on these protein kinases, and demonstrated that H(2)O(2)-induced phosphorylation of JNK and p38 but not p44/42 was inhibited by green tea polyphenol in A549 cells. We speculate that green tea polyphenol may inhibit H(2)O(2)-induced IL-8 production from A549 cells through inactivation of JNK and p38.  相似文献   

13.
Previous evidence has indicated that the neuronal toxicity of amyloid beta (betaA) protein is mediated through oxygen free radicals and can be attenuated by antioxidants and free radical scavengers. Recent studies have shown that green tea polyphenols reduced free radical-induced lipid peroxidation. The purpose of this study was to investigate whether (-)-epigallocatechin gallate (EGCG) would prevent or reduce the death of cultured hippocampal neuronal cells exposed to betaA because EGCG has a potent antioxidant property as a green tea polyphenol. Following exposure of the hippocampal neuronal cells to betaA for 48 hours, a marked hippocampal neuronal injuries and increases in malondialdehyde (MDA) level and caspase activity were observed. Co-treatment of cells with EGCG to betaA exposure elevated the cell survival and decreased the levels of MDA and caspase activity. Proapoptotic (p53 and Bax), Bcl-XL and cyclooxygenase (COX) proteins have been implicated in betaA-induced neuronal death. However, in this study the protective effects of EGCG seem to be independent of the regulation of p53, Bax, Bcl-XL and COX proteins. Taken together, the results suggest that EGCG has protective effects against betaA-induced neuronal apoptosis through scavenging reactive oxygen species, which may be beneficial for the prevention of Alzheimer's disease.  相似文献   

14.
Chrysin is a natural and biologically active flavonoid with anticancer effects. However, little is known about the adaptive response of cancer cells to chrysin. Chrysin reportedly has proteasome inhibitor activity. Previous studies demonstrated that proteasome inhibitors might induce endoplasmic reticulum (ER) stress response. In this study, we aimed to determine the effects of chrysin on hepatoma cells and roles of the ER-resident protein GRP78 (glucose-regulated protein 78) in its action. Also, we investigated the effects of green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), a natural GRP78 inhibitor, on the sensitivity of hepatoma cells to chrysin. Here, we report that chrysin inhibits hepatoma cells growth and induces apoptosis in a dose-dependent manner. Chrysin induces GRP78 overexpression, X-box binding protein-1 splicing and eukaryotic initiation factor 2α phosphorylation, hallmarks of the unfolded protein response. GRP78 knockdown potentiates chrysin-induced caspase-7 cleavage in hepatoma cells and enhances chrysin-induced apoptosis. EGCG overcomes chrysin-induced GRP78 expression. Combination of EGCG potentiates chrysin-induced caspase-7 and poly (ADP-ribose) polymerase (PARP) cleavage. Finally, EGCG sensitizes hepatoma cells to chrysin through caspase-mediated apoptosis. These data suggest that chrysin triggers the unfolded protein response. Abrogation of GRP78 induction may improve the anticancer effects of chrysin. Combination of EGCG and chrysin represents a new regimen for cancer chemoprevention and therapeutics.  相似文献   

15.
The aim of the present study was to gain a deeper insight into the cell signaling pathways involved in the neuroprotection/neurorescue activity of the major green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG). EGCG (1 micro m) caused an immediate (30 min) down-regulation (approximately 40%) of Bad protein levels, and a more pronounced reduction after 24 h (55%) in the human neuroblastoma cell line SH-SY5Y. Co-treatment with EGCG and the protein synthesis inhibitor cycloheximide prominently shortened Bad half-life, with as little as 30% of the Bad protein content remaining after 2 h, suggesting an effect of EGCG on Bad protein degradation. Accordingly, the proteasome inhibitors MG-132 and lactacystin damped Bad down-regulation by EGCG. The general protein kinase C (PKC) inhibitor GF109203X, or the down-regulation of conventional and novel PKC isoforms, abolished EGCG-induced Bad decline. However, no inhibition was seen with the cell-permeable myristoylated pseudosubstrate inhibitor of the atypical PKCzeta isoform. The enforced expression of Bad for up to 72 h rendered the cells more susceptible to serum deprivation-induced cell death, whereas EGCG treatment significantly improved cell viability (up to 1.6-fold). The present study reveals a novel pathway in the neuroprotective mechanism of the action of EGCG, which involves a rapid PKC-mediated degradation of Bad by the proteasome.  相似文献   

16.
The polycomb group (PcG) proteins, Bmi-1 and Ezh2, are important epigenetic regulators that enhance skin cancer cell survival. We recently showed that Bmi-1 and Ezh2 protein level is reduced by treatment with the dietary chemopreventive agents, sulforaphane and green tea polyphenol, and that this reduction involves ubiquitination of Bmi-1 and Ezh2, suggesting a key role of the proteasome. In the present study, we observe a surprising outcome that Bmi-1 and Ezh2 levels are reduced by treatment with the proteasome inhibitor, MG132. We show that this is associated with a compensatory increase in the level of mRNA encoding proteasome protein subunits in response to MG132 treatment and an increase in proteasome activity. The increase in proteasome subunit level is associated with increased Nrf1 and Nrf2 level. Moreover, knockdown of Nrf1 attenuates the MG132-dependent increase in proteasome subunit expression and restores Bmi-1 and Ezh2 expression. The MG132-dependent loss of Bmi-1 and Ezh2 is associated with reduced cell proliferation, accumulation of cells in G2, and increased apoptosis. These effects are attenuated by forced expression of Bmi-1, suggesting that PcG proteins, consistent with a prosurvival action, may antagonize the action of MG132. These studies describe a compensatory Nrf1-dependent, and to a lesser extent Nrf2-dependent, increase in proteasome subunit level in proteasome inhibitor-treated cells and confirm that PcG protein levels are regulated by proteasome activity.  相似文献   

17.
The structure-activity relationship of a number of synthetic green tea polyphenol analogs involving modifications of A ring and B ring of epi-gallocatechin gallate (EGCG) as proteasome inhibitors has been examined. It was found that in B ring, a decrease in the number of OH groups led to decreased potency. Introduction of a hydrophobic benzyl group into the 8 position of A ring did not significantly affect the proteasome-inhibitory potency.  相似文献   

18.
Accumulating evidence supports the hypothesis that brain iron misregulation and oxidative stress (OS), resulting in reactive oxygen species (ROS) generation from H2O2 and inflammatory processes, trigger a cascade of events leading to apoptotic/necrotic cell death in neurodegenerative disorders, such as Parkinson's (PD), Alzheimer's (AD) and Huntington's diseases, and amyotrophic lateral sclerosis (ALS). Thus, novel therapeutic approaches aimed at neutralization of OS-induced neurotoxicity, support the application of ROS scavengers, transition metals (e.g. iron and copper) chelators and non-vitamin natural antioxidant polyphenols, in monotherapy, or as part of antioxidant cocktail formulation for these diseases. Both experimental and epidemiological evidence demonstrate that flavonoid polyphenols, particularly from green tea and blueberries, improve age-related cognitive decline and are neuroprotective in models of PD, AD and cerebral ischemia/reperfusion injuries. However, recent studies indicate that the radical scavenger property of green tea polyphenols is unlikely to be the sole explanation for their neuroprotective capacity and in fact, a wide spectrum of cellular signaling events may well account for their biological actions. In this article, the currently established mechanisms involved in the beneficial health action and emerging studies concerning the putative novel molecular neuroprotective activity of green tea and its major polyphenol (-)-epigallocatechin-3-gallate (EGCG), will be reviewed and discussed.  相似文献   

19.
Green tea polyphenols exert a wide range of biochemical and pharmacological effects, and have been shown to possess antimutagenic and anticarcinogenic properties. Oxidative stress is involved in the pathogenesis of Parkinson's disease. However, although green tea polyphenols may be expected to inhibit the progression of Parkinson's disease on the basis of their known antioxidant activity, this has not previously been established. In the present study, we evaluated the neuroprotective effects of green tea polyphenols in the Parkinson's disease pathological cell model. The results show that the natural antioxidants have significant inhibitory effects against apoptosis induced by oxidative stress. 6-Hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells was chosen as the in vitro model of Parkinson's disease in our study. Apoptotic characteristics of PC12 cells were assessed by MTT assay, flow cytometry, fluorescence microscopy and DNA fragmentation. Green tea polyphenols and their major component, EGCG at a concentration of 200 microM, exert significant protective effects against 6-OHDA-induced PC12 cell apoptosis. EGCG is more effective than the mixture of green tea polyphenols. The antioxidant function of green tea polyphenols may account for this neuroprotective effect. The present study supports the notion that green tea polyphenols have the potential to be effective as neuropreventive agents for the treatment of neurodegenerative diseases.  相似文献   

20.
Green tea catechins (GTCs) are polyphenolic flavonoids formerly called vitamin P. GTCs, especially (-)-epigallocatechin-3-gallate (EGCG), lower the incidence of cancers, collagen-induced arthritis, oxidative stress-induced neurodegenerative diseases, and streptozotocin-induced diabetes. Also, inhibition of adipogenesis by green tea and green tea extract has been demonstrated in cell lines, animal models, and humans. The obesity-preventive effects of green tea and its main constituent EGCG are widely supported by results from epidemiological, cell culture, animal, and clinical studies in the last decade. Studies with adipocyte cell lines and animal models have demonstrated that EGCG inhibits extracellular signal-related kinases (ERK), activates AMP-activated protein kinase (AMPK), modulates adipocyte marker proteins, and down-regulates lipogenic enzymes as well as other potential targets. Also, the catechin components of green tea have been shown to possess anti-carcinogenic properties possibly related to their anti-oxidant activity. In addition, it was shown that dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes mellitus. In this review, the biological activities and multiple mechanisms of EGCG in cell lines, animal models, and clinical observations are explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号