首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
p53RDL1 regulates p53-dependent apoptosis   总被引:1,自引:0,他引:1  
Although a number of targets for p53 have been reported, the mechanism of p53-dependent apoptosis still remains to be elucidated. Here we report a new p53 target-gene, designated p53RDL1 (p53-regulated receptor for death and life; also termed UNC5B). The p53RDL1 gene product contains a cytoplasmic carboxy-terminal death domain that is highly homologous to rat Unc5H2, a dependence receptor involved in the regulation of apoptosis, as well as in axon guidance and migration of neural cells. We found that p53RDL1 mediated p53-dependent apoptosis. Conversely, when p53RDL1 interacted with its ligand, Netrin-1, p53-dependent apoptosis was blocked. Therefore, p53RDL1 seems to be a previously un-recognized target of p53 that may define a new pathway for p53-dependent apoptosis. We suggest that p53 might regulate the survival of damaged cells by balancing the regulation of Netrin-p53RDL1 signalling, and cell death through cleavage of p53RDL1 for apoptosis.  相似文献   

5.
The p53 tumor suppressor protein plays key roles in protecting cells from tumorigenesis. Phosphorylation of p53 at Ser46 (p53Ser46) is considered to be a crucial modification regulating p53-mediated apoptosis. Because the activity of p53 is impaired in most human cancers, restoration of wild-type p53 (wt-p53) function by its gene transfer or by p53-reactivating small molecules has been extensively investigated. The p53-reactivating compounds Nutlin-3 and RITA activate p53 in the absence of genotoxic stress by antagonizing the action of its negative regulator Mdm2. Although controversial, Nutlin-3 was shown to induce p53-mediated apoptosis in a manner independent of p53 phosphorylation. Recently, RITA was shown to induce apoptosis by promoting p53Ser46 phosphorylation. Here we examined whether Nutlin-3 or RITA can overcome resistance to p53-mediated apoptosis in p53-resistant tumor cell lines lacking the ability to phosphorylate p53Ser46. We show that Nutlin-3 did not rescue the apoptotic defect of a Ser46 phosphorylation-defective p53 mutant in p53-sensitive tumor cells, and that RITA neither restored p53Ser46 phosphorylation nor induced apoptosis in p53Ser46 phosphorylation-deficient cells retaining wt-p53. Furthermore, treatment with Nutlin-3 or RITA together with adenoviral p53 gene transfer also failed to induce apoptosis in p53Ser46 phosphorylation-deficient cells either expressing or lacking wt-p53. These results indicate that neither Nutlin-3 nor RITA in able to induce p53-mediated apoptosis in the absence of p53Ser46 phosphorylation. Thus, the dysregulation of this phosphorylation in tumor cells may be a critical factor that limits the efficacy of these p53-based cancer therapies.  相似文献   

6.
p53AIPl基因是近年发现的促凋亡基因,在p53依赖性的凋亡通路中起重要作用。p53AIPl介导线粒体凋亡途径,其表达依赖于p53蛋白的Ser^46的磷酸化。p53AIPl可直接促进凋亡,其促凋亡作用可能强于p53本身,并对p53抗性的肿瘤细胞也有作用。因此,对p53AIPl的深入研究可能会为对p53基因治疗有抗性的肿瘤患者带来新的希望。  相似文献   

7.
8.
9.
Induction of p53 gene expression in cancer cells can lead to both cell cycle arrest and apoptosis. To clarify whether the level of p53 expression determines the apoptotic response of hepatocellullar carcinoma (HCC) cells, we assessed the effect of various levels of expression of p53 gene on a p53-deficient HCC cell line, Hep3B, utilizing a doxycycline (Dox)-regulated inducible p53 expression system. Our results showed that apoptosis was induced in HCC cells with high levels of p53 expression. However, lower level of p53 expression induced only cell cycle arrest but not apoptosis. Bax expression was up-regulated following high levels of p53 expression, while bcl-2 expression was not altered by the level of p53 expression. Moreover, p21 expression was observed in both high and low expression of p53. These results suggest the level of p53 expression could determine if the HCC cells would go into cell cycle arrest or apoptosis. Bax may participate, at least in part, in inducing p53-dependent apoptosis and the induction of p21 alone was able to cause cell cycle arrest but not apoptosis.  相似文献   

10.
11.
p53 replacement gene therapy has been carried out clinically for cancers with p53 mutations; however, some cancers are resistant to p53 gene therapy. In this study, we transduced A-172 and U251 cells harboring p53 mutations with wild-type p53 using adenovirus vectors to induce wild-type p53 protein at similar expression levels. A-172 cells did not undergo apoptosis after p53 transduction, whereas U251 cells were markedly sensitive to p53-mediated apoptosis. A-172 cells showed higher endogenous expression of Bcl-X(L) than U251, and transduction of Bcl-X(L) repressed p53-mediated apoptosis in U251 cells, suggesting that high endogenous expression of Bcl-X(L) renders A-172 cells, at least in part, resistant to p53-mediated apoptosis. We transduced A-172 cells and U251 cells with the Apaf-1 or caspase-9 genes; both are downstream components of p53-mediated apoptosis. We found that A-172 cells were highly sensitive to Apaf-1- and caspase-9-mediated apoptosis. The results indicate that A-172 cells harboring mutant p53 were not susceptible to p53-mediated apoptosis, possibly due to high endogenous expression of Bcl-X(L). Transduction of Apaf-1 or caspase-9 would override the resistance mechanism of apoptosis in A-172 cells. These findings provide potentially a novel approach in killing cancers that are resistant to p53 replacement gene therapy.  相似文献   

12.
p53 acetylation enhances Taxol-induced apoptosis in human cancer cells   总被引:1,自引:0,他引:1  
Microtubule inhibitors (MTIs) such as Taxol have been used for treating various malignant tumors. Although MTIs have been known to induce cell death through mitotic arrest, other mechanisms can operate in MTI-induced cell death. Especially, the role of p53 in this process has been controversial for a long time. Here we investigated the function of p53 in Taxol-induced apoptosis using p53 wild type and p53 null cancer cell lines. p53 was upregulated upon Taxol treatment in p53 wild type cells and deletion of p53 diminished Taxol-induced apoptosis. p53 target proteins including MDM2, p21, BAX, and β-isoform of PUMA were also upregulated by Taxol in p53 wild type cells. Conversely, when the wild type p53 was re-introduced into two different p53 null cancer cell lines, Taxol-induced apoptosis was enhanced. Among post-translational modifications that affect p53 stability and function, p53 acetylation, rather than phosphorylation, increased significantly in Taxol-treated cells. When acetylation was enhanced by anti-Sirt1 siRNA or an HDAC inhibitor, Taxol-induced apoptosis was enhanced, which was not observed in p53 null cells. When an acetylation-defective mutant of p53 was re-introduced to p53 null cells, apoptosis was partially reduced compared to the re-introduction of the wild type p53. Thus, p53 plays a pro-apoptotic role in Taxol-induced apoptosis and acetylation of p53 contributes to this pro-apoptotic function in response to Taxol in several human cancer cell lines, suggesting that enhancing acetylation of p53 could have potential implication for increasing the sensitivity of cancer cells to Taxol.  相似文献   

13.
Reports suggest a role of calpains in degradation of wild-type p53, which may regulate p53 induction of apoptosis. A calpain inhibitor, n-acetyl-leu-leu-norleucinal (calpain inhibitor 1), was assessed for ability to enhance p53-dependent apoptosis in human tumor cell lines with endogenous wild-type p53 and in altered p53 cell lines with the replacement of wild-type p53 by a recombinant adenovirus (rAd-p53). Calpain inhibitor 1 treatment resulted in increased levels of activated p53, increased p21 protein, and activation of caspases. Cell lines with wild-type, but not mutated or null, p53 status arrested in G0/G1 and were sensitive to calpain inhibitor-induced apoptosis. Regardless of endogenous p53 status, calpain inhibitor treatment combined with rAd-p53, but not empty vector virus, enhanced apoptosis in tumor cell lines. These results demonstrate p53-dependent apoptosis induced by a calpain inhibitor and further suggest a role for calpains in the regulation of p53 activity and induction of apoptotic pathways.  相似文献   

14.
15.
Polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (MC) cause untoward effects including carcinogenesis. Here we investigated the effect of MC on apoptosis. MC induced apoptosis, preceded by serine 15 phosphorylation and accumulation of p53. MC failed to cause apoptosis in p53-deficient MG63 cells, whereas ectopic expression of p53 in MG63 cells restored the response to MC. Therefore, MC-induced apoptosis was dependent on p53. MC also activated p38 mitogen-activated protein kinase (MAPK) at 16-24 h. Accumulation of p53 and p53 phosphorylated at serine 15 was not changed by SB203580, a specific inhibitor of p38 MAPK or overexpression of a dominant negative mutant of p38 MAPK at 8 h after MC treatment, whereas the accumulation was suppressed at 24 h. These results suggest that MC induces accumulation and phosphorylation of p53 via a p38 MAPK-independent (early) and p38 MAPK-dependent (late) pathway. SB203580 repressed MC-induced apoptosis. MC induced p38 MAPK activation in p53 expressing cells but not in p53-deficient cells, indicating that the p38 MAPK activation was dependent on early p53 activation. The current study shows that both p53 and p38 MAPK activation are required for MC-induced apoptosis and provides a novel model of a functional regulation between p53 and p38 MAPK in chemical stress-induced apoptosis.  相似文献   

16.
17.
Tumor suppressor p53 is required for the neuronal apoptosis in response to DNA double-stranded break (DSB) damage. Posttranslational modifications such as phosphorylation play important roles in activating p53-dependent apoptosis after DNA damage. In support of this notion, our recent studies indicate that Ser18 and Ser23 phosphorylation together plays critical roles in activating p53 apoptotic activities in vivo. Thymocytes derived from p53S18/23A mice are essentially resistant to p53-dependent apoptosis after DNA DSB damage. In addition, identical to p53-deficiency, p53S18/23A knock-in mutation completely rescues the embryonic lethality of XRCC4-/- mice, which die of the massive p53-dependent apoptosis of embryonic neurons likely as a result of accumulated endogenous DNA damage. To dissect the contribution of Ser18 and Ser23 phosphorylation to p53-dependent neuronal apoptosis, we report here that neither p53S18A nor p53S23A mutation alone can rescue the embryonic lethality of XRCC4-/- mice. Therefore, Ser18 and Ser23 phosphorylation plays synergistic and critical roles in activating p53-dependent neuronal apoptosis.  相似文献   

18.
Huang J  Xu LG  Liu T  Zhai Z  Shu HB 《FEBS letters》2006,580(3):940-947
Recently, it has been shown that really interesting new gene (RING)-in between ring finger (IBR)-RING domain-containing proteins, such as Parkin and Parc, are E3 ubiquitin ligases and are involved in regulation of apoptosis. In this report, we show that p53-inducible RING-finger protein (p53RFP), a p53-inducible E3 ubiquitin ligase, induces p53-dependent but caspase-independent apoptosis. p53RFP contains an N-terminal RING-IBR-RING domain and an uncharacterized, evolutionally highly conserved C-terminal domain. p53RFP interacts with E2 ubiquitin-conjugating enzymes UbcH7 and UbcH8 but not with UbcH5, and this interaction is mediated through the RING-IBR-RING domain of p53RFP. Interestingly, the conserved C-terminal domain of p53RFP is required and sufficient for p53RFP-mediated apoptosis, suggesting p53RFP-mediated apoptosis does not require its E3 ubiquitin ligase activity. Together with a recent report showing that p53RFP is involved in ubiquitination and degradation of p21, a p53 downstream protein promoting growth arrest and antagonizing apoptosis, our findings suggest that p53RFP is involved in switching a cell from p53-mediated growth arrest to apoptosis.  相似文献   

19.
TIAF1 is a TGF-beta 1-induced factor that protects L929 fibroblasts from TNF-mediated apoptosis. In contrast, overexpressed TIAF1 induces growth inhibition and apoptosis of monocytic U937 and various nonfibroblast cells. TIAF1-mediated apoptosis of U937 cells involves upregulation of p53, p21, and Smad2/4, but downregulation of ERK phosphorylation. To determine whether p53 and TIAF1 functionally interact in regulating cell death, ectopic TIAF1 and p53 were shown to induce apoptosis of U937 cells in both synergistic and antagonistic manners. At optimal levels both TIAF1 and p53 mediated apoptosis cooperatively. Also, both proteins suppressed adherence-independent growth of L929 cells. In contrast, initiation of apoptosis by overexpressed TIAF1 was blocked by low doses of p53, and vice versa. Furthermore, ectopic p53 blocked an ongoing apoptosis in U937 cells stably expressing TIAF1. Yeast two-hybrid analyses failed to demonstrate the binding of p53 with TIAF1, suggesting an unidentified protein that links the p53/TIFA1 interaction. Suppression of TIAF1 expression by siRNA could not inhibit Ser15 phosphorylation in p53 in response to UV and etoposide. However, nuclear translocation of these Ser15-phosphorylated p53 was significantly reduced in TIAF1-silenced cells. Taken together, TIAF1 and p53 functionally interact in regulating apoptosis, and TIAF1 is likely to participate in the nuclear translocation of activated p53.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号