首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of actin dynamics at filament ends determines the organization and turnover of actin cytoskeletal structures. In striated muscle, it is believed that tight capping of the fast-growing (barbed) ends by CapZ and of the slow-growing (pointed) ends by tropomodulin (Tmod) stabilizes the uniform lengths of actin (thin) filaments in myofibrils. Here we demonstrate for the first time that both CapZ and Tmod are dynamic on the basis of the rapid incorporation of microinjected rhodamine-labelled actin (rho-actin) at both barbed and pointed ends and from the photobleaching of green fluorescent protein (GFP)-labelled Tmod. Unexpectedly, the inhibition of actin dynamics at pointed ends by GFP-Tmod overexpression results in shorter thin filaments, whereas the inhibition of actin dynamics at barbed ends by cytochalasin D has no effect on length. These data demonstrate that the actin filaments in myofibrils are relatively dynamic despite the presence of capping proteins, and that regulated actin assembly at pointed ends determines the length of thin filaments.  相似文献   

2.
Cell motility requires lamellipodial protrusion, a process driven by actin polymerization. Ena/VASP proteins accumulate in protruding lamellipodia and promote the rapid actin-driven motility of the pathogen Listeria. In contrast, Ena/VASP negatively regulate cell translocation. To resolve this paradox, we analyzed the function of Ena/VASP during lamellipodial protrusion. Ena/VASP-deficient lamellipodia protruded slower but more persistently, consistent with their increased cell translocation rates. Actin networks in Ena/VASP-deficient lamellipodia contained shorter, more highly branched filaments compared to controls. Lamellipodia with excess Ena/VASP contained longer, less branched filaments. In vitro, Ena/VASP promoted actin filament elongation by interacting with barbed ends, shielding them from capping protein. We conclude that Ena/VASP regulates cell motility by controlling the geometry of actin filament networks within lamellipodia.  相似文献   

3.
Cortactin promotes cell motility by enhancing lamellipodial persistence   总被引:1,自引:0,他引:1  
BACKGROUND: Lamellipodial protrusion, which is the first step in cell movement, is driven by actin assembly and requires activity of the Arp2/3 actin-nucleating complex. However, it is unclear how actin assembly is dynamically regulated to support effective cell migration. RESULTS: Cells deficient in cortactin have impaired cell migration and invasion. Kymography analyses of live-cell imaging studies demonstrate that cortactin-knockdown cells have a selective defect in the persistence of lamellipodial protrusions. The motility and protrusion defects are fully rescued by cortactin molecules, provided both the Arp2/3 complex and F-actin binding sites are intact. Consistent with this requirement for simultaneous contacts with Arp2/3 and F-actin, cortactin is recruited by Arp2/3 complex to lamellipodia and binds with a higher affinity to ATP/ADP-Pi-F-actin than to ADP-F-actin. In situ labeling of lamellipodia revealed that the relative levels of free barbed ends of actin filaments are reduced by over 30% in the cortactin-knockdown cells; however, there is no change in Arp2/3-complex localization to lamellipodia. Cortactin-knockdown cells also have a selective defect in the assembly of new adhesions in protrusions, as assessed by analysis of GFP-paxillin dynamics in living cells. CONCLUSIONS: Cortactin enhances lamellipodial persistence, at least in part through regulation of Arp2/3 complex. The presence of cortactin also enhances the rate of new adhesion formation in lamellipodia. In vivo, these functions may be important during directed cell motility.  相似文献   

4.
The driving force behind cell motility is the actin cytoskeleton. Filopodia and lamellipodia are formed by the polymerization and extension of actin filaments towards the cell membrane. This polymerization at the barbed end of the filament is balanced by depolymerization at the pointed end, recycling the actin in a 'treadmilling' process. One protein involved in this process is cofilin/actin-depolymerizing factor (ADF), which can depolymerize actin filaments, allowing treadmilling to occur at an accelerated rate. Cofilin/ADF is an actin-binding protein that is required for actin-filament disassembly, cytokinesis and the organization of muscle actin filaments. There is also evidence that cofilin/ADF enhances cell motility, although a direct requirement in vivo has not yet been shown. Here we show that Drosophila cofilin/ADF, which is encoded by the twinstar (tsr) gene, promotes cell movements during ovary development and oogenesis. During larval development, cofilin/ADF is required for the cell rearrangement needed for formation of terminal filaments, stacks of somatic cells that are important for the initiation of ovarioles. It is also required for the migration of border cells during oogenesis. These results show that cofilin/ADF is an important regulator of actin-based cell motility during Drosophila development.  相似文献   

5.
Tropomodulins (Tmods) are proteins that cap the slow-growing (pointed) ends of actin filaments (F-actin). The basis for our current understanding of Tmod function comes from studies in cells with relatively stable and highly organized F-actin networks, leading to the view that Tmod capping functions principally to preserve F-actin stability. However, not only is Tmod capping dynamic, but it also can play major roles in regulating diverse cellular processes involving F-actin remodeling. Here, we highlight the multifunctional roles of Tmod with a focus on Tmod3. Like other Tmods, Tmod3 binds tropomyosin (Tpm) and actin, capping pure F-actin at submicromolar and Tpm-coated F-actin at nanomolar concentrations. Unlike other Tmods, Tmod3 can also bind actin monomers and its ability to bind actin is inhibited by phosphorylation of Tmod3 by Akt2. Tmod3 is ubiquitously expressed and is present in a diverse array of cytoskeletal structures, including contractile structures such as sarcomere-like units of actomyosin stress fibers and in the F-actin network encompassing adherens junctions. Tmod3 participates in F-actin network remodeling in lamellipodia during cell migration and in the assembly of specialized F-actin networks during exocytosis. Furthermore, Tmod3 is required for development, regulating F-actin mesh formation during meiosis I of mouse oocytes, erythroblast enucleation in definitive erythropoiesis, and megakaryocyte morphogenesis in the mouse fetal liver. Thus, Tmod3 plays vital roles in dynamic and stable F-actin networks in cell physiology and development, with further research required to delineate the mechanistic details of Tmod3 regulation in the aforementioned processes, or in other yet to be discovered processes.  相似文献   

6.
Regulated actin filament assembly is critical for eukaryotic cell physiology. Actin filaments are polar structures, and those with free high affinity or barbed ends are crucial for actin dynamics and cell motility. Actin filament barbed-end-capping proteins inhibit filament elongation after binding, and their regulated disassociation is proposed to provide a source of free filament ends to drive processes dependent on actin polymerization. To examine whether dissociation of actin filament capping proteins occurs with the correct spatio-temporal constraints to contribute to regulated actin assembly in live cells, I measured the dissociation of an actin capping protein, gelsolin, from actin in cells using a variation of fluorescence resonance energy transfer (FRET). Uncapping was found to occur in cells at sites of active actin assembly, including protruding lamellae and rocketing vesicles, with the correct spatio-temporal properties to provide sites of actin filament polymerization during protrusion. These observations are consistent with models where uncapping of existing filaments provides sites of actin filament elongation.  相似文献   

7.
The regulation of free barbed ends is central to the control of dynamic actin assembly and actin-based motility in cells. Capping protein (CP) is known to regulate barbed ends and control actin assembly in cells. The CARMIL family of proteins can bind and inhibit CP in vitro, but the physiological significance of the interaction of CARMIL with CP in cells is poorly understood. Mammalian cells lacking CARMIL1 have defects in lamellipodia, macropinocytosis, cell migration, and Rac1 activation. Here we investigate the physiological significance of the CARMIL1–CP interaction, using a point mutant with a well-defined biochemical defect. We find that the CARMIL1–CP interaction is essential for the assembly of lamellipodia, the formation of ruffles, and the process of macropinocytosis. In contrast, the interaction of CARMIL1 with CP shows little to no importance for other functions of CARMIL1, including localization of CARMIL1 to the membrane, activation of Rac1, and cell migration. One implication is that lamellipodia are only marginally important for cell migration in a wound-healing model. The results also suggest that the ability of CARMIL1 to inhibit CP in cells may be regulated.  相似文献   

8.
The organization and polarity of actin filaments in neuronal growth cones was studied with negative stain and freeze-etch EM using a permeabilization protocol that caused little detectable change in morphology when cultured nerve growth cones were observed by video-enhanced differential interference contrast microscopy. The lamellipodial actin cytoskeleton was composed of two distinct subpopulations: a population of 40-100-nm-wide filament bundles radiated from the leading edge, and a second population of branching short filaments filled the volume between the dorsal and ventral membrane surfaces. Together, the two populations formed the three-dimensional structural network seen within expanding lamellipodia. Interaction of the actin filaments with the ventral membrane surface occurred along the length of the filaments via membrane associated proteins. The long bundled filament population was primarily involved in these interactions. The filament tips of either population appeared to interact with the membrane only at the leading edge; this interaction was mediated by a globular Triton-insoluble material. Actin filament polarity was determined by decoration with myosin S1 or heavy meromyosin. Previous reports have suggested that the polarity of the actin filaments in motile cells is uniform, with the barbed ends toward the leading edge. We observed that the actin filament polarity within growth cone lamellipodia is not uniform; although the predominant orientation was with the barbed end toward the leading edge (47-56%), 22-25% of the filaments had the opposite orientation with their pointed ends toward the leading edge, and 19-31% ran parallel to the leading edge. The two actin filament populations display distinct polarity profiles: the longer filaments appear to be oriented predominantly with their barbed ends toward the leading edge, whereas the short filaments appear to be randomly oriented. The different length, organization and polarity of the two filament populations suggest that they differ in stability and function. The population of bundled long filaments, which appeared to be more ventrally located and in contact with membrane proteins, may be more stable than the population of short branched filaments. The location, organization, and polarity of the long bundled filaments suggest that they may be necessary for the expansion of lamellipodia and for the production of tension mediated by receptors to substrate adhesion molecules.  相似文献   

9.
Regulation of the actin cytoskeleton by filament capping proteins is critical to myriad dynamic cellular functions. The ability of these proteins to bind both filaments as well as monomers is often central to their cellular functions. The ubiquitous pointed end capping protein Tmod3 (tropomodulin 3) acts as a negative regulator of cell migration, yet mechanisms behind its cellular functions are not understood. Analysis of Tmod3 effects on kinetics of actin polymerization and steady state monomer levels revealed that Tmod3, unlike previously characterized tropomodulins, sequesters actin monomers with an affinity similar to its affinity for capping pointed ends. Furthermore, Tmod3 is found bound to actin in high speed supernatant cytosolic extracts, suggesting that Tmod3 can bind to monomers in the context of other cytosolic monomer binding proteins. The Tmod3-actin complex can be efficiently cross-linked with 1-ethyl-3-(dimethylaminopropyl)carbodiimide/N-hydroxylsulfosuccinimide in a 1:1 complex. Subsequent tryptic digestion and liquid chromatography/tandem mass spectrometry revealed two binding interfaces on actin, one distinct from other actin monomer binding proteins, and two potential binding sites in Tmod3, which are independent of the previously characterized leucine-rich repeat structure involved in pointed end capping. These data suggest that the Tmod3 isoform may regulate actin dynamics differently in cells than the previously described tropomodulin isoforms.  相似文献   

10.
Each actin filament has a pointed and a barbed end, however, filament elongation occurs primarily at the barbed end. Capping proteins, by binding to the barbed end, can terminate this elongation. The rate of capping depends on the concentration of capping protein [1], and thus, if capping terminates elongation, the length of filaments should vary inversely with the concentration of capping protein. In cell extracts, such as those derived from neutrophils, new actin filaments can be nucleated by addition of GTPgammaS-activated Cdc42 (a small GTPase of the Rho family). To determine whether elongation of these filaments is terminated by capping, we manipulated the concentration of capping protein, the major calcium-independent capping protein in neutrophils, and observed the effects on filament lengths. Depletion of 70% of the capping protein from extracts increased the mean length of filaments elongated from spectrin-actin seeds (very short actin filaments with free barbed ends) but did not increase the mean length of filaments induced by Cdc42. Furthermore, doubling the concentration of capping protein in cell extracts by adding pure capping protein did not decrease the mean length of filaments induced by Cdc42. These results suggest that the barbed ends of Cdc42-induced filaments are protected from capping by capping protein.  相似文献   

11.
Tropomodulin (Tmod) is an actin pointed-end capping protein that regulates actin dynamics at thin filament pointed ends in striated muscle. Although pointed-end capping by Tmod controls thin filament lengths in assembled myofibrils, its role in length specification during de novo myofibril assembly is not established. We used the Drosophila Tmod homologue, sanpodo (spdo), to investigate Tmod's function during muscle development in the indirect flight muscle. SPDO was associated with the pointed ends of elongating thin filaments throughout myofibril assembly. Transient overexpression of SPDO during myofibril assembly irreversibly arrested elongation of preexisting thin filaments. However, the lengths of thin filaments assembled after SPDO levels had declined were normal. Flies with a preponderance of abnormally short thin filaments were unable to fly. We conclude that: (a) thin filaments elongate from their pointed ends during myofibril assembly; (b) pointed ends are dynamically capped at endogenous levels of SPDO so as to allow elongation; (c) a transient increase in SPDO levels during myofibril assembly converts SPDO from a dynamic to a permanent cap; and (d) developmental regulation of pointed-end capping during myofibril assembly is crucial for specification of final thin filament lengths, myofibril structure, and muscle function.  相似文献   

12.
Actin (thin) filament length regulation and stability are essential for striated muscle function. To determine the role of the actin filament pointed end capping protein, tropomodulin1 (Tmod1), with tropomyosin, we generated monoclonal antibodies (mAb17 and mAb8) against Tmod1 that specifically disrupted its interaction with tropomyosin in vitro. Microinjection of mAb17 or mAb8 into chick cardiac myocytes caused a dramatic loss of the thin filaments, as revealed by immunofluorescence deconvolution microscopy. Real-time imaging of live myocytes expressing green fluorescent protein-alpha-tropomyosin and microinjected with mAb17 revealed that the thin filaments depolymerized from their pointed ends. In a thin filament reconstitution assay, stabilization of the filaments before the addition of mAb17 prevented the loss of thin filaments. These studies indicate that the interaction of Tmod1 with tropomyosin is critical for thin filament stability. These data, together with previous studies, indicate that Tmod1 is a multifunctional protein: its actin filament capping activity prevents thin filament elongation, whereas its interaction with tropomyosin prevents thin filament depolymerization.  相似文献   

13.
To understand the intracellular role of G-actin concentration in stimulus-induced actin assembly and lamellipodium extension during cell migration, we developed a novel technique for quantifying spatiotemporal changes in G-actin concentration in live cells, consisting of sequential measurements of fluorescent decay after photoactivation (FDAP) of Dronpa-labeled actin. Cytoplasmic G-actin concentrations decreased by ~40% immediately after cell stimulation and thereafter the cell area extended. The extent of stimulus-induced G-actin loss and cell extension correlated linearly with G-actin concentration in unstimulated cells, even at concentrations much higher than the critical concentration of actin filaments, indicating that cytoplasmic G-actin concentration is a critical parameter for determining the extent of stimulus-induced G-actin assembly and cell extension. Multipoint FDAP analysis revealed that G-actin concentration in lamellipodia was comparable to that in the cell body. We also assessed the cellular concentrations of free G-actin, profilin- and thymosin-β4-bound G-actin, and free barbed and pointed ends of actin filaments by model fitting of jasplakinolide-induced temporal changes in G-actin concentration.  相似文献   

14.
The first step in the directed movement of cells toward a chemotactic source involves the extension of pseudopods initiated by the focal nucleation and polymerization of actin at the leading edge of the cell. We have previously isolated a chemoattractant-regulated barbed-end capping activity from Dictyostelium that is uniquely associated with capping protein, also known as cap32/34. Although uncapping of barbed ends by capping protein has been proposed as a mechanism for the generation of free barbed ends after stimulation, in vitro and in situ analysis of the association of capping protein with the actin cytoskeleton after stimulation reveals that capping protein enters, but does not exit, the cytoskeleton during the initiation of actin polymerization. Increased association of capping protein with regions of the cell containing free barbed ends as visualized by exogenous rhodamine-labeled G-actin is also observed after stimulation. An approximate threefold increase in the number of filaments with free barbed ends is accompanied by increases in absolute filament number, whereas the average filament length remains constant. Therefore, a mechanism in which preexisting filaments are uncapped by capping protein, in response to stimulation leading to the generation of free barbed ends and filament elongation, is not supported. A model for actin assembly after stimulation, whereby free barbed ends are generated by either filament severing or de novo nucleation is proposed. In this model, exposure of free barbed ends results in actin assembly, followed by entry of free capping protein into the actin cytoskeleton, which acts to terminate, not initiate, the actin polymerization transient.  相似文献   

15.
Stimulation of metastatic MTLn3 cells with epidermal growth factor (EGF) causes a rapid and transient increase in actin nucleation activity resulting from the appearance of free barbed ends at the extreme leading edge of extending lamellipods. To investigate the role of cofilin in EGF-stimulated actin polymerization and lamellipod extension in MTLn3 cells, we examined in detail the temporal and spatial distribution of cofilin relative to free barbed ends and characterized the actin dynamics by measuring the changes in the number of actin filaments. EGF stimulation triggers a transient increase in cofilin in the leading edge near the membrane, which is precisely cotemporal with the appearance of free barbed ends there. A deoxyribonuclease I binding assay shows that the number of filaments per cell increases by 1.5-fold after EGF stimulation. Detection of pointed ends in situ using deoxyribonuclease I binding demonstrates that this increase in the number of pointed ends is confined to the leading edge compartment, and does not occur within stress fibers or in the general cytoplasm. Using a light microscope severing assay, cofilin's severing activity was observed directly in cell extracts and shown to be activated after stimulation of the cells with EGF. Microinjection of function-blocking antibodies against cofilin inhibits the appearance of free barbed ends at the leading edge and lamellipod protrusion after EGF stimulation. These results support a model in which EGF stimulation recruits cofilin to the leading edge where its severing activity is activated, leading to the generation of short actin filaments with free barbed ends that participate in the nucleation of actin polymerization.  相似文献   

16.
Tropomodulins (Tmod) bind to the N terminus of tropomyosin and cap the pointed end of actin filaments. Tropomyosin alone also inhibits the rate of actin depolymerization at the pointed end of filaments. Here we have defined 1) the structural requirements of the N terminus of tropomyosin important for regulating the pointed end alone and with erythrocyte Tmod (Tmod1), and 2) the Tmod1 subdomains required for binding to tropomyosin and for regulating the pointed end. Changes in pyrene-actin fluorescence during polymerization and depolymerization were measured with actin filaments blocked at the barbed end with gelsolin. Three tropomyosin isoforms differently influence pointed end dynamics. Recombinant TM5a, a short non-muscle alpha-tropomyosin, inhibited depolymerization. Recombinant (unacetylated) TM2 and N-acetylated striated muscle TM (stTM), long alpha-tropomyosin isoforms with the same N-terminal sequence, different from TM5a, also inhibited depolymerization but were less effective than TM5a. All blocked the pointed end with Tmod1 in the order of effectiveness TM5a >stTM >TM2, showing the importance of the N-terminal sequence and modification. Tmod1-(1-344), lacking the C-terminal 15 residues, did not nucleate polymerization but blocked the pointed end with all three tropomyosin isoforms as does a shorter fragment, Tmod1-(1-92), lacking the C-terminal "capping" domain though higher concentrations were required. An even shorter fragment, Tmod1-(1-48), bound tropomyosin but did not influence actin filament elongation. Tropomyosin-Tmod may function to locally regulate cytoskeletal dynamics in cells by stabilizing actin filaments.  相似文献   

17.
We develop a mathematical model that describes key details of actin dynamics in protrusion associated with cell motility. The model is based on the dendritic-nucleation hypothesis for lamellipodial protrusion in nonmuscle cells such as keratocytes. We consider a set of partial differential equations for diffusion and reactions of sequestered actin complexes, nucleation, and growth by polymerization of barbed ends of actin filaments, as well as capping and depolymerization of the filaments. The mechanical aspect of protrusion is based on an elastic polymerization ratchet mechanism. An output of the model is a relationship between the protrusion velocity and the number of filament barbed ends pushing the membrane. Significantly, this relationship has a local maximum: too many barbed ends deplete the available monomer pool, too few are insufficient to generate protrusive force, so motility is stalled at either extreme. Our results suggest that to achieve rapid motility, some tuning of parameters affecting actin dynamics must be operating in the cell.  相似文献   

18.
To obtain kinetic information about the pointed ends of actin filaments, experiments were carried out in the presence of gelsolin which blocks all events at the kinetically dominant barbed ends. The 1:2 gelsolin-actin complex retains 1 mol/mol of actin-bound ATP, but it neither hydrolyzes the ATP nor exchanges it with ATP free in solution at a significant rate. On the other hand, the actin filaments with their barbed ends capped with gelsolin hydrolyze ATP relatively rapidly at steady state, apparently as a result of the continued interaction of ATP-G-actin with the pointed ends of the filaments. ATP hydrolysis during spontaneous polymerization of actin in the presence of relatively high concentrations of gelsolin lags behind filament elongation so that filaments consisting of as much as 50% ATP-actin subunits are transiently formed. Probably for this reason, during polymerization the actin monomer concentration transiently reaches a concentration lower than the final steady-state critical concentration of the pointed end. At steady state, however, there is no evidence for an ATP cap at the pointed ends of gelsolin-capped filaments, which differs from the barbed ends which do have an ATP cap in the absence of gelsolin. As there is no reason presently to think that gelsolin has any effect on events at the pointed ends of filaments, the properties of the pointed ends deduced from these experiments with gelsolin-capped filaments are presumably equally applicable to the pointed ends of filaments in which the barbed ends are free.  相似文献   

19.
Actin polymerization controls a range of cellular processes, from intracellular trafficking to cell motility and invasion. Generation and elongation of free barbed ends defines the regions of actively polymerizing actin in cells and, consequently, is of importance in the understanding of the mechanisms through which actin dynamics are regulated. Herein we present a method that does not involve cell permeabilization and provides direct visualization of growing barbed ends using photoswitchable β-actin-Dendra2 constructs expressed in murine macrophage and rat mammary adenocarcinoma cell lines. The method exploits the ability of photoconverted (red) G-actin species to become incorporated into pre-existing (green) actin filaments, visualized in two distinct wavelengths using TIRF microscopy. In growing actin filaments, photoconverted (red) monomers are added to the barbed end while only green monomers are recycled from the pointed end. We demonstrate that incorporation of actin into intact podosomes of macrophages occurs constitutively and is amenable to inhibition by cytochalasin D indicating barbed end incorporation. Additionally, actin polymerization does not occur in quiescent invadopodial precursors of carcinoma cells suggesting that the filaments are capped and following epidermal growth factor stimulation actin incorporation occurs in a single but extended peak. Finally, we show that Dendra2 fused to either the N- or the C-terminus of β-actin profoundly affects its localization and incorporation in distinct F-actin structures in carcinoma cells, thus influencing the ability of monomers to be photoconverted. These data support the use of photoswitchable actin-Dendra2 constructs as powerful tools in the visualization of free barbed ends in living cells.  相似文献   

20.
Control of actin polymerization in live and permeabilized fibroblasts   总被引:37,自引:26,他引:11       下载免费PDF全文
We have investigated the spatial control of actin polymerization in fibroblasts using rhodamine-labeled muscle actin in; (a) microinjection experiments to follow actin dynamics in intact cells, and (b) incubation with permeabilized cells to study incorporation sites. Rhodamine-actin was microinjected into NIH-3T3 cells which were then fixed and stained with fluorescein-phalloidin to visualize total actin filaments. The incorporation of newly polymerized actin was assayed using rhodamine/fluorescein ratio-imaging. The results indicated initial incorporation of the injected actin near the tip and subsequent transport towards the base of lamellipodia at rates greater than 4.5 microns/min. Furthermore, both fluorescein- and rhodamine-intensity profiles across lamellipodia revealed a decreasing density of actin filaments from tip to base. From this observation and the presence of centripetal flux of polymerized actin we infer that the actin cytoskeleton partially disassembles before it reaches the base of the lamellipodium. In permeabilized cells we found that, in agreement with the injection studies, rhodamine-actin incorporated predominantly in a narrow strip of less than 1-microns wide, located at the tip of lamellipodia. The critical concentration for the rhodamine-actin incorporation (0.15 microM) and its inhibition by CapZ, a barbed-end capping protein, indicated that the nucleation sites for actin polymerization most likely consist of free barbed ends of actin filaments. Because any potential monomer-sequestering system is bypassed by addition of exogenous rhodamine-actin to the permeabilized cells, these observations indicate that the localization of actin incorporation in intact cells is determined, at least in part, by the presence of specific elongation and/or nucleation sites at the tips of lamellipodia and not solely by localized desequestration of subunits. We propose that the availability of the incorporation sites at the tips of lamellipodia is because of capping activities which preferentially inhibit barbed-end incorporation elsewhere in the cell, but leave barbed ends at the tips of lamellipodia free to add subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号