首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex relationships exist among electromyograms (EMGs) of the upper airway muscles, respective changes in muscle length, and upper airway volume. To test the effects of preventing lung inflation on these relationships, recordings were made of EMGs and length changes of the geniohyoid (GH) and sternohyoid (SH) muscles as well as of tidal changes in upper airway volume in eight anesthetized cats. During resting breathing, tracheal airway occlusion tended to increase the inspiratory lengthening of GH and SH. In response to progressive hypercapnia, the GH eventually shortened during inspiration in all animals; the extent of muscle shortening was minimally augmented by airway occlusion despite substantial increases in EMGs. SH lengthened during inspiration in six of eight animals under hypercapnic conditions, and in these cats lengthening was greater during airway occlusion even though EMGs increased. Despite the above effects on SH and GH length, upper airway tidal volume was increased significantly by tracheal occlusion under hypercapnic conditions. These data suggest that the thoracic and upper airway muscle reflex effects of preventing lung inflation during inspiration act antagonistically on hyoid muscle length, but, because of the mechanical arrangement of the hyoid muscles relative to the airway and thorax, they act agonistically to augment tidal changes in upper airway volume. The augmentation of upper airway tidal volume may occur in part as a result of the effects of thoracic movements being passively transmitted through the hyoid muscles.  相似文献   

2.
Relation between upper airway volume and hyoid muscle length   总被引:2,自引:0,他引:2  
Previous studies have suggested that the geniohyoid and sternohyoid muscles act to enlarge the upper airway. If correct, there should be an inverse relation between upper airway volume and the length of hyoid muscles. To test this, known volumes of air were injected into or removed from the isolated sealed upper airway of eight pentobarbital sodium-anesthetized cats, and the resultant changes in geniohyoid and sternohyoid length were measured using sonomicrometry. Increases in upper airway volume shortened the geniohyoid in all cats (P less than 0.001) and shortened the sternohyoid in seven of eight cats (P less than 0.01); mean geniohyoid shortening (as a % of resting length) exceeded that of the sternohyoid. Decreases in upper airway volume lengthened the geniohyoid in all cats (P less than 0.001) but caused variable changes in sternohyoid length. Extension of the neck increased the resting lengths of both the geniohyoid (P less than 0.001) and sternohyoid (P less than 0.002). Neck flexion shortened the resting length of both hyoid muscles (P less than 0.001 for both), with the geniohyoid shortening more (as a % of resting length) than the sternohyoid (P less than 0.005). Progressive flexion of the neck from 180 to 90 degrees caused progressive increases in the ratio of changes in muscle length to changes in upper airway volume during airway inflation but did not affect this relation during airway deflation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In nine anesthetized supine spontaneously breathing dogs, we compared moving average electromyograms (EMGs) of the costal diaphragm and the third parasternal intercostal muscles with their respective respiratory changes in length (measured by sonomicrometry). During resting O2 breathing the pattern of diaphragm and intercostal muscle inspiratory shortening paralleled the gradually incrementing pattern of their moving average EMGs. Progressive hypercapnia caused progressive increases in the amount and velocity of respiratory muscle inspiratory shortening. For both muscles there were linear relationships during the course of CO2 rebreathing between their peak moving average EMGs and total inspiratory shortening and between tidal volume and total inspiratory shortening. During single-breath airway occlusions, the electrical activity of both the diaphragm and intercostal muscles increased, but there were decreases in their tidal shortening. The extent of muscle shortening during occluded breaths was increased by hypercapnia, so that both muscles shortened more during occluded breaths under hypercapnic conditions (PCO2 up to 90 Torr) than during unoccluded breaths under normocapnic conditions. These results suggest that for the costal diaphragm and parasternal intercostal muscles there is a close relationship between their electrical and mechanical behavior during CO2 rebreathing, this relationship is substantially altered by occluding the airway for a single breath, and thoracic respiratory muscles do not contract quasi-isometrically during occluded breaths.  相似文献   

4.
The geniohyoid (Genio) upper airway muscle shows phasic, inspiratory electrical activity in awake humans but no activity and lengthening in anesthetized cats. There is no information about the mechanical action of the Genio, including length and shortening, in any awake, nonanesthetized mammal during respiration (or swallowing). Therefore, we studied four canines, mean weight 28.8 kg, 1.5 days after Genio implantation with sonomicrometry transducers and bipolar electromyogram (EMG) electrodes. Awake recordings of breathing pattern, muscle length and shortening, and EMG activity were made with the animal in the right lateral decubitus position during quiet resting, CO2-stimulated breathing, inspiratory-resisted breathing (80 cmH2O. l-1. s), and airway occlusion. Genio length and activity were also measured during swallowing, when it shortened, showing a 9.31% change from resting length, and its EMG activity increased 6.44 V. During resting breathing, there was no phasic Genio EMG activity at all, and Genio showed virtually no movement during inspiration. During CO2-stimulated breathing, Genio showed minimal lengthening of only 0.07% change from resting length, whereas phasic EMG activity was still absent. During inspiratory-resisted breathing and airway occlusion, Genio showed phasic EMG activity but still lengthened. We conclude that the Genio in awake, nonanesthetized canines shows active contraction and EMG activity only during swallowing. During quiet or stimulated breathing, Genio is electrically inactive with passive lengthening. Even against resistance, Genio is electrically active but still lengthens during inspiration.  相似文献   

5.
The abdominal muscles accelerate airflow during expiration and may also influence the end-expiratory volume and configuration of the thorax. Although much is known about their electrical activity, the degree to which they change length during the respiratory cycle has not been previously assessed. In the present study we measured respiratory changes in transverse abdominis length using sonomicrometry in 14 pentobarbital sodium-anesthetized supine dogs and compared length changes to simultaneously recorded tidal volume and transverse abdominis electromyograms (EMG). To determine muscle resting length at passive functional residual capacity (LFRC), the animals were hyperventilated to apnea. The transverse abdominis was electrically active in all animals during resting O2 breathing (eupnea). During inspiration the transverse abdominis lengthened above resting length in all 14 dogs by a mean of 3.7 +/- 1.1% LFRC; during expiration the transverse abdominis shortened below resting length in 13 of 14 dogs by a mean of 4.2 +/- 0.9% LFRC. Increasing hyperoxic hypercapnia (produced in 9 animals) progressively heightened transverse abdominis EMG and progressively increased the extent of muscle shortening below resting length (to 12.6 +/- 3.2% LFRC at a PCO2 of 90 Torr). During single-breath airway occlusion substantial inspiratory lengthening of the transverse abdominis occurred, both during O2 breathing and during CO2 rebreathing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Persistence of inspiratory muscle activity during the early phase of expiratory airflow slows the rate of lung deflation, whereas heightened expiratory muscle activity produces the opposite effect. To examine the influence of increased chemoreceptor drive and the role of vagal afferent activity on these processes, the effects of progressive hypercapnia were evaluated in 12 anesthetized tracheotomized dogs before and after vagotomy. Postinspiratory activity of inspiratory muscles (PIIA) and the activity of expiratory muscles were studied. During resting breathing, the duration of PIIA correlated with the duration of inspiration but not with expiration. Parasternal intercostal PIIA was directly related to that of the diaphragm. Based on their PIIA, dogs could be divided into two groups: one with prolonged PIIA (mean 0.57 s) and the other with brief PIIA (mean 0.16 s). Hypercapnia caused progressive shortening of the PIIA in the dogs with prolonged PIIA during resting breathing. The electrical activity of the external oblique and internal intercostal muscles increased gradually during CO2 rebreathing in all dogs both pre- and postvagotomy. After vagotomy, abdominal activity continued to increase with hypercapnia but was less at all levels of PCO2. The internal intercostal response to hypercapnia was not affected by vagotomy. The combination of shorter PIIA and augmented expiratory activity with hypercapnia might, in addition to changes in lung recoil pressure and airway resistance, hasten exhalation.  相似文献   

7.
Previous investigators (van Lunteren et al. J. Appl. Physiol. 62: 582-590, 1987) have suggested that the geniohyoid and sternohyoid muscles may act as upper airway dilators in the cat. To investigate the effect of geniohyoid and sternohyoid contraction on inspiratory upper airway resistance (UAR), we studied five adult male cats anesthetized with ketamine and xylazine during spontaneous room-air breathing. Inspiratory nasal airflow was measured by sealing the lips and constructing a nose mask. Supraglottic pressure was measured using a transpharyngeal catheter placed above the larynx. Mask pressure was measured using a separate catheter. Geniohyoid and sternohyoid lengths were determined by sonomicrometry. Geniohyoid and sternohyoid contraction was stimulated by direct muscle electrical stimulation with implanted wire electrodes. Mean inspiratory UAR was determined for spontaneous breaths under three conditions: 1) baseline (no muscle stimulation), 2) geniohyoid contraction alone, and 3) sternohyoid contraction alone. Geniohyoid contraction alone produced no significant reduction in inspiratory UAR [unstimulated, 17.75 +/- 0.86 (SE) cmH2O.l-1.s; geniohyoid contraction, 19.24 +/- 1.10]. Sternohyoid contraction alone also produced no significant reduction in inspiratory UAR (unstimulated, 15.74 +/- 0.92 cmH2O.l-1.s; sternohyoid contraction, 14.78 +/- 0.78). Simultaneous contraction of the geniohyoid and sternohyoid muscles over a wide range of muscle lengths produced no consistent change in inspiratory UAR. The geniohyoid and sternohyoid muscles do not appear to function consistently as upper airway dilator muscles when UAR is used as an index of upper airway patency in the cat.  相似文献   

8.
The position of the hyoid arch suggests that it supports soft tissue surrounding the upper airway (UA) and can act to maintain UA patency. We also suspected that muscles inserting on the hyoid arch might show respiratory patterns of activity that could be affected by respiratory stimuli. To test these possibilities, we moved the hyoid arch ventrally in six anesthetized dogs either by traction on it or by stimulation of hyoid muscles. UA resistance was decreased 73 +/- (SE) 6% and 72 +/- 6% by traction and stimulation during expiration and 57 +/- 15% and 52 +/- 8% during inspiration. Moving averages of the geniohyoid (GH) and thyrohyoid (TH) obtained in six other dogs breathing 100% O2 showed phasic respiratory activity while the sternohyoid (SH) showed phasic respiratory activity in only two of these animals and no activity in four. With progressive hypercapnia, GH and TH increased as did SH when activity was already present. Airway occlusion at end expiration augmented and prolonged inspiratory activity in the hyoid muscles but did not elicit SH activity if not already present. Occlusion at end inspiration suppressed phasic activity in hyoid muscles for as long as in the diaphragm. After vagotomy activity increased and became almost exclusively inspiratory. Activity appeared in SH when not previously present. Duration and amplitude of hyoid muscle activity were increased with negative UA pressure and augmented breaths. We conclude that the hyoid arch and muscles can strongly affect UA flow resistance. Hyoid muscles show responses to chemical, vagal, and negative pressure stimuli similar to other UA muscles.  相似文献   

9.
The interosseous external intercostal (EI) muscles of the upper rib cage are electrically active during inspiration, but the mechanical consequence of their activation is unclear. In 16 anesthetized dogs, we simultaneously measured EI (3rd and 4th interspaces) and parasternal intercostal (PA) (3rd interspace) electromyogram and length. Muscle length was measured by sonomicrometry and expressed as a percentage of resting length (%LR). During resting breathing, each muscle was electrically active and shortened to a similar extent. Sequential EI muscle denervation (3rd and 4th interspaces) followed by PA denervation (3rd interspace) demonstrated significant reductions in the degree of inspiratory shortening for each muscle. Mean EI muscle shortening of the third and fourth interspaces decreased from -3.4 +/- 0.5 and -3.0 +/- 0.4% LR (SE) under control conditions to -0.2 +/- 0.2 and -0.8 +/- 0.3% LR, respectively, after selective denervation of each of these muscles (P less than 0.001 for each). After selective denervation of the PA muscle, its shortening decreased from -3.5 +/- 0.3 to +0.6% LR (SE) (P less than 0.001). PA muscle denervation also caused the EI muscle in the third interspace to change from inspiratory shortening of -0.2% to inspiratory lengthening of +0.2% +/- 0.2 (P less than 0.05). We conclude that during eupneic breathing 1) the EI muscles of the upper rib cage, like the PA muscles, are inspiratory agonists and actively contribute to rib cage expansion and 2) PA muscle contraction contributes to EI muscle shortening.  相似文献   

10.
In previous studies differences were frequently found between the pharyngeal dilator muscles and the thoracic respiratory muscles in their patterns of electrical and mechanical activity during the respiratory cycle, with both resting and stimulated breathing. However, little is known about the intrinsic properties of the pharyngeal muscles and how they relate to the intrinsic properties of the diaphragm. In the present study, the fiber subtype distributions of two pharyngeal dilator muscles, the geniohyoid and the sternohyoid, were ascertained histochemically in the cat. The geniohyoid and the sternohyoid muscles had a preponderance of fast glycolytic (FG) fibers (mean 48 and 55%, respectively), a smaller number of fast oxidative-glycolytic (FOG) fibers (mean 36 and 31%, respectively), and few slow oxidative (SO) fibers (mean 16 and 14%, respectively). The percentages of SO fibers of both hyoid muscles were significantly (P less than 0.01) lower than that of the costal diaphragm, and the percentages of FOG and FG fibers were significantly higher than that of the diaphragm. In conclusion, the geniohyoid and sternohyoid muscles have histochemical characteristics usually associated with fast contraction and intermediate endurance properties.  相似文献   

11.
Recent studies suggest that the external intercostal (EI) muscles of the upper rib cage, like the parasternals (PA), play an important ventilatory role, even during eupneic breathing. The purpose of the present study was to further assess the ventilatory role of the EI muscles by determining their response to various static and dynamic respiratory maneuvers and comparing them with the better-studied PA muscles. Applied interventions included 1) passive inflation and deflation, 2) abdominal compression, 3) progressive hypercapnia, and 4) response to bilateral cervical phrenicotomy. Studies were performed in 11 mongrel dogs. Electromyographic (EMG) activities were monitored via bipolar stainless steel electrodes. Muscle length (percentage of resting length) was monitored with piezoelectric crystals. With passive rib cage inflation produced either with a volume syringe or abdominal compression, each muscle shortened; with passive deflation, each muscle lengthened. During eupneic breathing, each muscle was electrically active and shortened to a similar degree. In response to progressive hypercapnia, peak EMG of each intercostal muscle increased linearly and to a similar extent. Inspiratory shortening also increased progressively with increasing PCO2, but in a curvilinear fashion with no significant differences in response among intercostal muscles. In response to phrenicotomy, the EMG and degree of inspiratory shortening of each intercostal muscle increased significantly. Again, the response among intercostal muscles was not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The effect of methacholine-induced bronchoconstriction on the electrical activity of respiratory muscles during expiration was studied in 12 anesthetized spontaneously breathing dogs. Before and after aerosols of methacholine, diaphragm, parasternal intercostal, internal intercostal, and external oblique electromyograms were recorded during 100% O2 breathing and CO2 rebreathing. While breathing 100% O2, five dogs showed prolonged electrical activity of the diaphragm and parasternal intercostals in early expiration, postinspiratory inspiratory activity (PIIA). Aerosols of methacholine increased pulmonary resistance, decreased tidal volume, and elevated arterial PCO2. During bronchoconstriction, when PCO2 was varied by CO2 rebreathing, PIIA was shorter at low levels of PCO2, and external oblique and internal intercostal were higher at all levels of PCO2. Vagotomy shortened PIIA in dogs with prolonged PIIA. After vagotomy, methacholine had no effects on PIIA but continued to increase external oblique and internal intercostal activity at all levels of PCO2. These findings indicate that bronchoconstriction influences PIIA through a vagal reflex but augments expiratory activity, at least in part, by extravagal mechanisms.  相似文献   

13.
The electrical activity and the respiratory changes in length of the third parasternal intercostal muscle were measured during single-breath airway occlusion in 12 anesthetized, spontaneously breathing dogs in the supine posture. During occluded breaths in the intact animal, the parasternal intercostal was electrically active and shortened while pleural pressure fell. In contrast, after section of the third intercostal nerve at the chondrocostal junction and abolition of parasternal electrical activity, the muscle always lengthened. This inspiratory muscle lengthening must be related to the fall in pleural pressure; it was, however, approximately 50% less than the amount of muscle lengthening produced, for the same fall in pleural pressure, by isolated stimulation of the phrenic nerves. These results indicate that 1) the parasternal inspiratory shortening that occurs during occluded breaths in the dog results primarily from the muscle inspiratory contraction per se, and 2) other muscles of the rib cage, however, contribute to this parasternal shortening by acting on the ribs or the sternum. The present studies also demonstrate the important fact that the parasternal inspiratory contraction in the dog is really agonistic in nature.  相似文献   

14.
Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.  相似文献   

15.
The electromyograms of the diaphragm and an external intercostal muscle were analyzed to see if the effects of hypercapnia on inspiratory muscle electrical activity could be distinguished from those of mechanical loading and to determine whether changes in inspiratory muscle electrical activity were a sueful measure of CO2 response during mechanical loading. Anesthetized dogs were studied: 1) during progressive hypercapnia without mechanical loading, 2) during flow-resistive and elastic loading at constant PCO2, and 3) during progressive hypercapnia and mechanical loading. Both mechanical loading and hypercapnia increased total inspiratory diaphragmatic and intercostal muscle electrical activity. However, inspiratory duration was increased by mechanical loads but reduced by hypercapnia. Because of these changes in inspiratory duration, the average rate of diaphragmatic electrical activity remained unaffected by mechanical loading before and after vagotomy but was increased by hypercapnia. In contrast, both hypercapnia and mechanical loading increased the average rate of intercostal muscle electrical activity. There was a greater increase in both total and average rate of intercostal muscle electrical activity during hypercapnia in the presence of mechanical loading than during unloaded breathing. However, the change in total and average rate of diaphragmatic electrical activity with PCO2 was unaffected by added mechanical loads. These results suggest that diaphragmatic but not intercostal muscle electrical activity can be used as an index of CO2 response even during mechanical loading.  相似文献   

16.
Effect of hypercapnia and PEEP on expiratory muscle EMG and shortening   总被引:1,自引:0,他引:1  
The present study examined the effects of hypercapnia and positive end-expiratory pressure (PEEP) on the electromyographic (EMG) activity and tidal length changes of the expiratory muscles in 12 anesthetized, spontaneously breathing dogs. The integrated EMG activity of both abdominal (external oblique, internal oblique, rectus abdominis, and transverse abdominis) and thoracic (triangularis sterni, internal intercostal) expiratory muscles increased linearly with increasing PCO2 and PEEP. However, with both hypercapnia and PEEP, the percent increase in abdominal muscle electrical activity exceeded that of thoracic expiratory muscle activity. Both hypercapnia and PEEP increased the tidal shortening of the external oblique and rectus abdominis muscles. Changes in tidal length correlated closely with simultaneous increases in muscle electrical activity. However, during both hypercapnia and PEEP, length changes of the external oblique were significantly greater than those of the rectus abdominis. We conclude that both progressive hypercapnia and PEEP increase the electrical activity of all expiratory muscles and augment their tidal shortening but produce quantitatively different responses in the several expiratory muscles.  相似文献   

17.
Changes in length of costal and crural segments of the canine diaphragm were measured by sonomicrometry within the first 100-300 ms of inspiration during CO2 rebreathing in anesthetized animals. Both segments showed small but significant decreases in end-expiratory length during progressive hypercapnia. Although both costal and crural segments showed electromyographic activity within the first 100 ms of inspiration, in early inspiration crural shortening predominated with minimal costal shortening. Neither segment contracted isometrically early in inspiration in the presence of airway occlusion. The amount of crural shortening during airway occlusion exceeded costal shortening; both segments showed increased shortening with prolonged occlusion and increasing CO2. Costal and crural shortening at 100 ms was not different for unoccluded and occluded states. These observations suggest that neural control patterns evoke discrete and unequal contributions from the diaphragmatic segments at the beginning of an inspiration; the crural segment may be predominately recruited in early inspiration. Despite traditional assumptions about occlusion pressure measurement (P0.1), diaphragm segments do not contract isometrically during early inspiratory effort against an occluded airway.  相似文献   

18.
Positional changes of anatomic structures surrounding the upper airway are known to affect pharyngeal mechanics and collapsibility. We hypothesized that these alterations also affect the ability of the upper airway dilator muscles to enlarge the pharynx by altering their ability to shorten when activated. Using sonomicrometry, we evaluated in seven anesthetized dogs the effects of changes in tracheal and head position on the length of the genioglossus (GG) and the geniohyoid (GH) and the effects of these positional changes on the magnitude of shortening of the two muscles in response to electro- (ES) and chemostimulation (CS). Caudal traction of the trachea lengthened the GG and GH in all dogs, whereas cranial displacement of the trachea and flexion of the head to a vertical position shortened the muscles. Compared with the magnitude of ES-induced shortening in the neutral position, ES-induced shortening of the GG was 144.7 +/- 14.6, 49.3 +/- 4.3, and 33.5 +/- 11.6% during caudal and cranial displacement of the trachea and during head flexion, respectively. Similar effects of the positional changes were found for the GH, as well as for both muscles during respiratory stimulation with P(CO2) of 90 Torr at the end of CO(2) rebreathing, although inspiratory muscle shortening during CS reached only one-quarter to one-third of the magnitude observed during ES. We conclude that positional alterations of anatomic structures in the neck have a dramatic effect on the magnitude of shortening of the activated GG and GH, which may reduce substantially their ability to protect pharyngeal patency.  相似文献   

19.
We have previously demonstrated that the shortening of the canine parasternal intercostals during inspiration results primarily from the muscles' own activation (J. Appl. Physiol. 64: 1546-1553, 1988). In the present studies, we have tested the hypothesis that other inspiratory rib cage muscles may contribute to the parasternal inspiratory shortening. Eight supine, spontaneously breathing dogs were studied. Changes in length of the third or fourth right parasternal intercostal were measured during quiet breathing and during single-breath airway occlusion first with the animal intact, then after selective denervation of the muscle, and finally after bilateral phrenicotomy. Denervating the parasternal virtually eliminated the muscle shortening during quiet inspiration and caused the muscle to lengthen during occluded breaths. After phrenicotomy, however, the parasternal, while being denervated, shortened again a significant amount during both quiet inspiration and occluded breaths. These data thus confirm that a component of the parasternal inspiratory shortening is not active and results from the action of other inspiratory rib cage muscles. Additional studies in four animals demonstrated that the scalene and serratus muscles do not play any role in this phenomenon; it must therefore result from the action of intrinsic rib cage muscles.  相似文献   

20.
To assess the mechanical coupling between the parasternal and external intercostals in the cranial portion of the rib cage, we measured the respiratory changes in length and the electromyograms of the two muscles in the same third or fourth intercostal space in 24 spontaneously breathing dogs. We found that 1) the amount of inspiratory shortening of the external intercostal was considerably smaller than the amount of shortening of the parasternal; 2) after selective denervation of the parasternal, the inspiratory shortening of both the parasternal and the external intercostal was almost abolished; 3) on the other hand, after selective denervation of the external intercostal, the inspiratory shortening of the parasternal was unchanged, and the inspiratory shortening of the external intercostal was reduced but not suppressed; and 4) this persistent shortening of the external intercostal was reversed into a clear-cut inspiratory lengthening when the parasternal was subsequently denervated. We conclude that in the dog 1) the inspiratory contraction of the external intercostals in the cranial portion of the rib cage is agonistic in nature as is the contraction of the parasternals; 2) during resting breathing, however, the changes in length of these external intercostals are largely determined by the action of the parasternals. These observations are consistent with the idea that in the dog, the parasternals play a larger role than the external intercostals in elevating the ribs during resting inspiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号