首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of enzymes of the ascorbate–glutathione cycle was studied in mitochondria purified from green and red pepper (Capsicum annuum L.) fruits. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) were present in the isolated mitochondria of both fruit ripening stages. The activity of the reductive ascorbate–glutathione cycle enzymes (MDHAR, GR and DHAR) was higher in mitochondria isolated from green than from red fruits, while APX and the antioxidative enzyme superoxide dismutase (SOD; EC 1.15.1.1) were higher in the red fruits. The levels of ascorbate and L-galactono-γ-lactone dehydrogenase (GLDH; EC 1.3.2.3) activity were found to be similar in the mitochondria of both fruits. The higher APX and Mn-SOD specific activities in mitochondria from red fruits might play a role in avoiding the accumulation of any activated oxygen species generated in these mitochondria, and suggests an active role for these enzymes during ripening.  相似文献   

2.
Changes in 7 antioxidative enzymes in naturally senescent cotyledons of cucumber ( Cucumis sativus ) were investigated. The activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) gradually decreased during the progression of senescence, while those of ascorbate peroxidase (APX; EC 1.11.1.11) and guaiacol peroxidase (GPX; EC 1.11.1.7) gradually increased. The activity of monodehydroascorbate reductase (MDAR; EC 1.6.5.4) was not significantly changed. Western blot analysis showed that the protein level of mitochondrial SOD gradually declined. The protein level of catalase transiently decreased and then increased in the later stages of senescence, despite the decrease in its activity. The overall behavior was markedly different from that found in cotyledons of artificially senescing seedlings transferred into darkness; the activities of SOD, catalase, APX, GPX and GR gradually increased.  相似文献   

3.
Ascorbate levels and redox state, as well as the activities of the ascorbate related enzymes, have been analysed both in the apoplastic and symplastic spaces of etiolated pea (Pisum sativum L.) shoots during cellular differentiation. The ascorbate pool and the ascorbate oxidizing enzymes, namely ascorbate oxidase and ascorbate peroxidase, were present in both pea apoplast and symplast, whereas ascorbate free radical reductase and dehydroascorbate reductase were only present in the symplastic fractions. During cell differentiation the ascorbate redox enzymes changed in different ways, since a decrease in ascorbate levels, ascorbate peroxidase and ascorbate free radical reductase occurred from meristematic to differentiated cells, whereas ascorbate oxidase and dehydroascorbate reductase increased. The activity of secretory peroxidases has also been followed in the apoplast of meristematic and differentiating cells. These peroxidases increased their activity during differentiation. This behaviour was accompanied by changes in their isoenzymatic profiles. The analysis of the kinetic characteristics of the different peroxidases present in the apoplast suggests that the presence of ascorbate and ascorbate peroxidase in the cell wall could play a critical role in regulating the wall stiffening process during cell differentiation by interfering with the activity of secretory peroxidases.  相似文献   

4.
The primary reaction product of chloroplast ascorbate peroxidaseactivity was shown to be monodehydroascorbate radical (MDA).MDA reductase (EC 1.6.5.4 [EC] ) was localized in spinach chloroplaststroma. The MDA reductase activity of spinach chloroplasts,using NAD(P)H as electron donor, could account for the regenerationof ascorbate from MDA produced by ascorbate peroxidase activity.In the absence of MDA reductase, MDA disproportionated to ascorbate(AsA) and dehydroascorbate (DHA). The DHA was reduced to AsAby DHA reductase (EC 1.8.5.1 [EC] ) in chloroplasts. Both NADH andNADPH served as the electron donor of partially purified MDAreductase from spinach leaves. (Received September 24, 1983; Accepted January 23, 1984)  相似文献   

5.
Antioxidative responses of Calendula officinalis under salinity conditions.   总被引:10,自引:0,他引:10  
To gain a better insight into long-term salt-induced oxidative stress, some physiological parameters in marigold (Calendula officinalis L.) under 0, 50 and 100 mM NaCl were investigated. Salinity affected most of the considered parameters. High salinity caused reduction in growth parameters, lipid peroxidation and hydrogen peroxide accumulation. Under high salinity stress, a decrease in total glutathione and an increase in total ascorbate (AsA + DHA), accompanied with enhanced glutathione reductase (GR, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) activities, were observed in leaves. In addition, salinity induced a decrease in superoxide dismutase (SOD, EC 1.15.1.1) and peroxidase (POX, EC 1.11.1.7) activities. The decrease in dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) activities suggests that other mechanisms play a major role in the regeneration of reduced ascorbate. The changes in catalase (CAT, EC 1.11.1.6) activities, both in roots and in leaves, may be important in H2O2 homeostasis.  相似文献   

6.
The changes of ascorbic acid, dehydroascorbic acid, and glutathione content and related enzyme activities were studied in apple buds during dormancy and thidiazuron-induced bud break. An increase in ascorbic acid, reduced form of glutathione (GSH), total glutathione, total non-protein thiol (NPSH) and non-glutathione thiol (RSH) occurred as a result of induction by thidiazuron during bud break, whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased during the same period. Thidiazuron also enhanced the ratio of GSH/GSSG, and activities of ascorbate free radical reductase (AFR; EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11). dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2). The ascorbic acid content and the activities of AFR, ascorbate peroxidase, and DHAR peaked when buds were in the side green or green tip stage just prior to the start of rapid expansion, and declined thereafter. The GSH, NPSH, RSH, ratio of GSH/GSSG, and activities of GR increased steadily during bud development.  相似文献   

7.
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.  相似文献   

8.
The ascorbate-glutathione system was studied during development and maturation of beech (Fagus sylvatica L.) seeds, the classification of which in the orthodox category is controversial. This study revealed an increase in glutathione content after acquisition of desiccation tolerance, which was more intensive in embryonic axes than in cotyledons. During seed maturation, the redox status of glutathione markedly changed toward the more reducing state, especially in cotyledons. Ascorbic acid content decreased during maturation, mostly in cotyledons. Activities of the enzymes of the ascorbate-glutathione cycle—ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2)—were markedly higher in embryonic axes than in cotyledons throughout the study period. In the course of seed maturation, the activities of these enzymes decreased. Importance of the ascorbate-glutathione cycle in desiccation tolerance of beech seeds was discussed in relation to results for typical orthodox and recalcitrant seeds of other broadleaved species.  相似文献   

9.
The ascorbate system in recalcitrant and orthodox seeds   总被引:9,自引:0,他引:9  
Recalcitrant seeds of Ginkgo biloba L., Quercus cerris L., Aesculus hippocastanum L. and Cycas revoluta Thunb. are shed by the plant at a high moisture content, contain a large amount of ascorbic acid (ASA) and maintain high ascorbate (ASC) peroxidase (EC 1.11.1.11) activity. Three proteins showing ASC peroxidase activity are present in G. biloba seeds. Conversely, dry orthodox seeds ( Vicia faba L., Avena sativa L., Pinus pinea L.) are completely devoid of ASA and ASC peroxidase. Experimentally induced rapid variations of the water level in both recalcitrant and orthodox seeds do not affect the ASC peroxidase; slow dehydration affects the ASC peroxidase activity moderately in recalcitrant seeds, but provokes a complete loss of germinability. Another peculiar difference between orthodox and recalcitrant seeds concerns the ascorbate recycling enzymes, ascorbate free radical (AFR) reductase (EC 1.6.5.4) and dehydroascorbate (DHA) reductase (EC 1.8.5.1). The DHA reduction capability is low in recalcitrant seeds, but is high in the orthodox ones. In contrast, AFR reductase activity is high in recalcitrant seeds and low in the orthodox ones. Data reported here concerning the ASC system appear to contribute to better understanding the recalcitrance. The presence of three different proteins showing ASC peroxidase activity in the archaic seed-bearing plant G. biloba and its involvement in the spermatophyte evolution is discussed.  相似文献   

10.
Metabolic changes during the development and maturation of Triticum durum Desf. (L.) kernels were studied, with particular emphasis on changes in the redox state of ascorbate and glutathione, as well as in the activities of the enzymes responsible for the recycling of their oxidized forms (ascorbic free radical reductase, EC 1.6.5.4; dehydroascorbate reductase, EC 1.8.5.1; glutathione reductase, EC 1.6.4.2) and for detoxification or utilization of hydrogen peroxide (ascorbate peroxidase, EC 1.11.1.11; catalase, EC 1.11.1.6). In parallel with this analysis, the production and storage of reserve compounds was studied, in particular, soluble carbohydrates (mono- di-saccharides and fructans) and the transition from sulphydryl groups to disulphide bridges into proteins. The results indicate that both the activities of the ascorbate and glutathione redox enzymes and that of catalase are high before the start of drying maturation, after which they decrease. Moreover, analysis of the redox state of ascorbate and glutathione pairs and the sulphydryl to disulphide transition into proteins suggests that these three parameters are tightly related during kernel maturation, thus confirming the involvement of the two redox pairs in protein maturation as well as in protection against reactive oxygen species. The physiological implications of the changes in cellular redox state and in soluble carbohydrates for the acquisition of desiccation tolerance and reaching the resting phase in orthodox seeds are also discussed.  相似文献   

11.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

12.
The involvement of the ascorbate-glutathione cycle in the defence against Cu-induced oxidative stress was studied in the roots of Phaseolus vulgaris L. cv. Limburgse vroege. All the enzymes of this cycle [ascorbate peroxidase (APOD), EC 1.11.1.11; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; dehydroascorbate reductase (DHAR), EC 1.8.5.1; glutathione reductase (GR), EC 1.6.4.2] were increased, and the total ascorbate and glutathione pools rose after a 15 μ M root Cu treatment. In the first hours after the start of the experiment, the accumulation of dehydroascorbate (DHA), formed as a result of a Cu-mediated direct oxidation of ascorbate (AA), was limited by a non-enzymatic reduction using glutathione (GSH) as the reductant. At 24 h, the enzyme capacities of both DHAR and GR were increased to maintain the redox status of the AA and GSH pools. After 72 h of Cu application, the DHAR capacity was inhibited and MDHAR was responsible for maintaining the AA pool in its reduced form. Although the GR capacity was enhanced after 72 h in the treated plants, the GSSG/GSH ratio was increased. This could be due to direct participation of GSH in the detoxification of Cu through reduction and complexation.  相似文献   

13.
Pinus densata is a homoploid hybrid species, originating from P. tabuliformis × P. yunnanensis. The physiological fitness of this natural hybrid compared to its two parental species remains unknown. In this study, we investigated physiological responses of the three species by exposing artificially breed seedlings of each to drought stress lasting 28 days. Our results suggest that, in all three species, drought affected the contents of the plants’ chlorophyll, stomatal conductance, TBARS, hydrogen peroxide, and free proline and increased the activities of antioxidant enzymes, including superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), and peroxidase (POD; EC 1.11.1.7). The drought stress also induced significant changes in the activity of ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), dehydroascorbate reductase (DHAR; EC 1.8.5.1), glutathione reductase (GR; EC 1.6.4.2), and levels of ascorbate and glutathione in the ascorbate–glutathione cycle. The hybrid species P. densata appeared to achieve greater drought tolerance and exhibit hybrid superiority in antioxidant processes and other related physiological traits compared to the two parental species, although a few of the hybrid’s measured variables were similar to those of P. tabuliformis. However, P. yunnanensis was more sensitive to drought and appeared to have the lowest resistance to such stress. These physiological differences are largely consistent with the species’ habitat preferences, which may reflect their early genetic divergences and niche differentiation. These findings provide important information for management and forest restoration efforts of these species in the future.  相似文献   

14.
The control of ascorbic acid synthesis and turnover in pea seedlings   总被引:10,自引:0,他引:10  
The rate of ascorbate synthesis and turnover in pea seedling embryonic axes was investigated in relation to its pool size. Ascorbate accumulated in embryonic axes of germinating pea seeds which has been supplied with ascorbate. Incorporation of [U-14C]glucose into ascorbate after a 2 h labelling period was reduced by ascorbate loading for 3 h and 20 h, providing evidence that ascorbate biosynthesis is inhibited by endogenous ascorbate. Ascorbate turnover was estimated by following the metabolism of [1-14C]ascorbate over 2 h after ascorbate loading and by the rate of decrease of the ascorbate pool size after ascorbate loading. Ascorbate turnover rate, determined by [1-14C]ascorbate metabolism, increased as a linear function of pool size. The absolute turnover rate was higher in ascorbate-loaded embryonic axes but was always about 13% of the pool per hour. The initial rate of ascorbate turnover, estimated from the net decrease in pool size after ascorbate loading, also showed a similar turnover rate to that estimated from [1-14C]ascorbate metabolism. Ascorbate loading had no effect on ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase or glutathione reductase activity. Ascorbate oxidase activity decreased after ascorbate loading.  相似文献   

15.
The antioxidant status of potato ( Solanum tuberosum L.) tubers of two genotypes, cv. Désirée and clone 10337de40 was investigated in relation to susceptibility to internal rust spot (IRS), a Ca2+-related physiological disorder. Concentrations of total calcium within the perimedulla tissue of tubers, grown with a restricted (1 m M CaCl2) Ca2+ supply, were similar in cv. Désirée (IRS resistant) and clone 10337de40 (IRS susceptible). A range of antioxidants was assayed in order to assess antioxidant status in both genotypes under the two Ca2+ treatments. Although no appreciable differences were detected between low Ca2+ and control treatments, certain antioxidants were present at significantly higher levels in the IRS resistant genotype, cv. Désirée. These included dehydroascorbate reductase (EC 1.8.5.1) activity (more than 100% higher), total glutathione content (ca 40% higher), glutathione reductase (EC 1.6.4.2) activity (almost 50% higher), peroxidase (EC 1.11.1.7) activity (ca 60% higher) and superoxide dismutase (EC 1.15.1.1) activity (almost 80% higher). There was no difference in ascorbate content, ascorbate free radical reductase activity (EC 1.6.5.4), α-tocopherol levels and catalase activity (EC 1.11.1.6) between the two genotypes. The possible relationship between resistance to IRS and a superior antioxidant status, found in cv. Désirée, is discussed.  相似文献   

16.
Kuzniak E  Skłodowska M 《Planta》2005,222(1):192-200
Peroxisomes, being one of the main organelles where reactive oxygen species (ROS) are both generated and detoxified, have been suggested to be instrumental in redox-mediated plant cell defence against oxidative stress. We studied the involvement of tomato (Lycopersicon esculentum Mill.) leaf peroxisomes in defence response to oxidative stress generated upon Botrytis cinerea Pers. infection. The peroxisomal antioxidant potential expressed as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and glutathione peroxidase (GSH-Px, EC 1.11.1.19) as well as the ascorbate-glutathione (AA-GSH) cycle activities was monitored. The initial infection-induced increase in SOD, CAT and GSH-Px indicating antioxidant defence activation was followed by a progressive inhibition concomitant with disease symptom development. Likewise, the activities of AA-GSH cycle enzymes: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) as well as ascorbate and glutathione concentrations and redox ratios were significantly decreased. However, the rate and timing of these events differed. Our results indicate that B. cinerea triggers significant changes in the peroxisomal antioxidant system leading to a collapse of the protective mechanism at advanced stage of infection. These changes appear to be partly the effect of pathogen-promoted leaf senescence.  相似文献   

17.
Antioxidant enzyme activities were determined at the first,third and fifth leaf stages of four inbred lines of maize (Zeamays L.) exhibiting differential sensitivity to chilling. Plantswere exposed to a photoperiod of 16:8 L:D for one of three treatments:(a) control (25C), (b) control treatment plus an exposure toa short-term chilling shock (11C 1 d prior to harvesting),and (c) long-term (11 C constant) chilling exposure. Catalase(CAT; EC 1.11.1.6 [EC] ), ascorbate peroxidase (ASPX; EC 1.11.1.11 [EC] ),superoxide dismutase (SOD; EC 1.15.1.1 [EC] ), glutathione reductase(GR; EC 1.6.4.2 [EC] ), and mono-dehydroascorbate reductase (MDHAR;EC 1.6.5.4 [EC] ) activities were assessed. Reducing and non-reducingsugars and starch concentrations were determined as generalmetabolic indicators of stress. Reduced activities of CAT, ASPX,and MDHAR may contribute to limiting chilling tolerance at theearly stages of development in maize. Changes in levels of sugarand starch indicated a more rapid disruption of carbohydrateutilization in comparison to photosynthetic rates in the chilling-sensitiveline under short-term chilling shocks and suggested a greaterdegree of acclimation in the tolerant lines over longer periodsof chilling. Key words: Antioxidant enzymes, differential chilling sensitivity, maize, soluble carbohydrates, Zea mays  相似文献   

18.
Abstract. The activities of five active-oxygen scavenging enzymes were compared for cold-lability and three were compared for chilling induction in two Zea genotypes of contrasting susceptibility to photoinhibition during chilling. Activities of superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GTR, EC 1.6.4.2) in leaf extracts from plants grown without chilling stress were assayed at 19°C and 5°C. Enzymes from the chilling-susceptible Z. Mays cv. LG11 had lower specific activities at 5°C than did enzymes from the chilling-tolerant Z. diploperennis, except for MDHAR where no significant differences were observed. The activities of SOD and APX from Z. diploperennis were double those of Z. mays at both assay temperatures. Monodehydroa-scrobate reductase and glutathione reductase activities in both species were reduced by 63–78% at a 5°C assay temperature. The dehydroascorbate reductase (DHAR) showed the greatest low-temperature lability losing 96% (Z. diploperennis) and 100% (Z. mays) of its activity at 5°C. To examine possible chilling-induced changes in levels of enzyme activity, plants of both Zea genotypes were transferred to growth chambers at 10°C at moderate light intensities. Glutathione reductase activity was found to increase within 24h in Z. diploperennis, but it decreased slightly in Z. mays. MDHAR activity decreased by 50% in Z. diploperennis but showed only a transient increase in activity in Z. mays.  相似文献   

19.
The enhanced generation of reactive oxygen species (ROS) under metal/metalloid stress is most common in plants, and the elevated ROS must be successfully metabolized in order to maintain plant growth, development, and productivity. Ascorbate (AsA) is a highly abundant metabolite and a water-soluble antioxidant, which besides positively influencing various aspects in plants acts also as an enigmatic component of plant defense armory. As a significant component of the ascorbate-glutathione (AsA-GSH) pathway, it performs multiple vital functions in plants including growth and development by either directly or indirectly metabolizing ROS and its products. Enzymes such as monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate reductase (DHAR, EC 1.8.5.1) maintain the reduced form of AsA pool besides metabolically controlling the ratio of AsA with its oxidized form (dehydroascorbate, DHA). Ascorbate peroxidase (APX, EC 1.11.1.11) utilizes the reduced AsA pool as the specific electron donor during ROS metabolism. Thus, AsA, its redox couple (AsA/DHA), and related enzymes (MDHAR, DHAR, and APX) cumulatively form an AsA redox system to efficiently protect plants particularly against potential anomalies caused by ROS and its products. Here we present a critical assessment of the recent research reports available on metal/metalloid-accrued modulation of reduced AsA pool, AsA/DHA redox couple and AsA-related major enzymes, and the cumulative significance of these antioxidant system components in plant metal/metalloid stress tolerance.  相似文献   

20.
Zaharieva TB  Abadía J 《Protoplasma》2003,221(3-4):269-275
Summary.  The effects of Fe deficiency stress on the levels of ascorbate and glutathione, and on the activities of the enzymes ferric chelate reductase, glutathione reductase (EC 1.6.4.2), ascorbate free-radical reductase (EC 1.6.5.4) and ascorbate peroxidase (EC 1.11.1.11), have been investigated in sugar beet (Beta vulgaris L.) roots. Plasma membrane vesicles and cytosolic fractions were isolated from the roots of the plants grown in nutrient solutions in the absence or presence of Fe for two weeks. Plants responded to Fe deficiency not only with a 20-fold increase in root ferric chelate reductase activity, but also with moderately increased levels of the general reductants ascorbate (2-fold) and glutathione (1.6-fold). The enzymes of the ascorbate-glutathione cycle in roots were also affected by Fe deficiency. Glutathione reductase activity was enhanced 1.4-fold with Fe deficiency, associated to an increased ratio of reduced to oxidized glutathione, from 3.1 to 5.2. The plasma membrane fraction from iron-deficient roots showed 1.7-fold higher ascorbate free-radical reductase activity, whereas in the cytosolic fraction the enzyme activity was not affected by Fe deficiency. The activity of the cytosolic hemoprotein ascorbate peroxidase decreased approximately by 50% with Fe deprivation. These results show that sugar beet responds to Fe deficiency with metabolic changes affecting components of the ascorbate-glutathione cycle in root cells. This suggests that the ascorbate-glutathione cycle would play certain roles in the general Fe deficiency stress responses in strategy I plants. Received November 19, 2001; accepted September 30, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, CSIC, Apartado 202, 50080 Zaragoza, Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号