首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacillus licheniformis ATCC 9945a is one of the bacterial strains that produce gamma-poly(glutamic acid) (gamma-PGA). The use of carbohydrate medium components for gamma-PGA production was explored. Cells were grown in shake flasks or in controlled pH fermentors using medium formulations that contain different carbon sources. During the cultivations, aliquots were removed to monitor cell growth, carbon utilization, polymer production, and polymer molecular weight. Glucose was a better carbon source than glycerol for cell growth. Furthermore, glucose was utilized at a faster rate than glycerol, citrate, or glutamate. However, by using mixtures of glucose and glycerol in medium formulations, the efficiency of gamma-PGA production increased. For example, by increasing the glycerol in medium formulations from 0 to 40 g/L, the gamma-PGA broth concentration after 96 h increased from 5.7 to 20.5 g/L. Considering that glycerol utilization was low for the glucose/glycerol mixtures studied, it was unclear as to the mechanism by which glycerol leads to enhanced product formation. Cell growth and concomitant gamma-PGA production (12 g/L) at pH 6.5 was possible using glucose as a carbon source if trace amounts (0.5 g/L each) of citrate and glutamate were present in the medium. We suggested that citrate and glutamate were useful in preventing salt precipitation from the medium. In addition, glutamate may be preferred relative to ammonium chloride as a nitrogen source. The conversion of glucose to gamma-PGA by the strain ATCC 9945a was believed to occur by glycolysis of glucose to acetyl-CoA and tricarboxylic acid (TCA) cycle intermediates that were then metabolized via the TCA cycle to form alpha-ketoglutarate, which is a direct glutamate precursor.  相似文献   

2.
Poly(glutamic acid) was produced maximally by Bacillus subtilis in batch fermentations at pH 7 and using glycerol at 20 g l–1 in a glutamic acid/citric acid medium. Poly(glutamic acid) reached 23 g l–1 after 30 h.  相似文献   

3.
An efficient strategy for the separation and recovery of gamma-polyglutamic acid (gamma-PGA) from highly viscous broth was developed. This strategy was divided into two processes: The first was to separate gamma-PGA from highly viscous culture broth; the second was to concentrate gamma-PGA solution by ultrafiltration for the reduction of the amount of alcohol required during recovery process with precipitation. By lowering the pH value of culture broth to 3, the viscosity of culture broth and the zeta potential of cell could be reduced to a sixth of the original value at 35 degrees C and a third, respectively. After the acidification of culture broth the energy demand for the separation of gamma-PGA from culture broth by centrifugation could be reduced to 17% of that without it when the centrifugal force was 22,000g. The amount of alcohol required for precipitation could be reduced to a fourth of that generally used without concentration by concentrating 20 g gamma-PGA/L solution to 60 g gamma-PGA/L at pH 5 by ultrafiltration with hollow-fiber membrane cartridge (MWCO 500,000).  相似文献   

4.
The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs.  相似文献   

5.
6.
The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs.  相似文献   

7.
8.
Summary Clostridum propionicum is a chemical autotroph that metabolizes alanine to propionic acid (reduction product) and acetic acid (oxidation product). The ratio of propionate/acetate predicted by the electron balance is 2:1. This study reports the effect of pH on growth and organic acid production by this organism when grown in both test tube cultures initially buffered from pH 7.0 to 5.0, and in fermentors maintained at pH 7.0 and 6.5. Highest growth and organic acid production was found at pH 7.0 in both cases. HPLC analysis showed that at pH 7.0, the ratios of propionate to acetate were 0.45:1 (stationary tube, 24 h). The highest ratio observed was 1.8:1 (stationary tube, pH 6.0, 24h). This tube produced 8.5% of the acids produced in the pH 7.0 culture tube. The identify of the major portion of the reduction products of the organism remains unknown.  相似文献   

9.
AIMS: To evaluate the relationship between exopolysaccharide (EPS) production and the sugar nucleotide biosynthetic enzymes in Lactobacillus casei CRL 87 under optimum growth conditions for polymer formation: controlled pH on galactose or glucose. Studies with an EPS mutant were carried out to determine the key enzymes in EPS synthesis under the above culture conditions. METHODS AND RESULTS: EPS concentration was estimated by the phenol/sulphuric acid method, while the activities of the biosynthetic enzymes were determined spectrophotometrically by measuring the formation or disappearance of NAD(P)H at 340 nm. An environmental pH of 5.0, using galactose as carbon source, markedly improved not only polymer production and yield but also, cell growth and lactic acid production. Analysis of the activities of the EPS precursor-forming enzymes revealed that polysaccharide synthesis was correlated with uridine-diphosphate (UDP)-glucose pyrophosphorylase and UDP-galactose 4-epimerase under these growth conditions. CONCLUSIONS: EPS synthesis by Lact. casei CRL 87 was considerably improved at a controlled pH of 5.0 with galactose as carbon source, and was correlated with the activity of UDP-glucose pyrophosphorylase and UDP-galactose 4-epimerase. The results obtained with the wild-type and EPS- strains suggest that UDP-galactose 4-epimerase plays an essential role in EPS formation. SIGNIFICANCE AND IMPACT OF THE STUDY: Unravelling the key enzymes involved in EPS biosynthesis under optimum culture conditions for polymer production provides important information for the design of strategies, via genetic engineering, to enhance polysaccharide formation.  相似文献   

10.
In this study, Bacillus licheniformis cells were immobilized by entrapment in calcium alginate beads and were used for production of alkaline protease by repeated batch process. In order to increase the stability of the beads, the immobilization procedure was optimized by statistical full factorial method, by which three factors including alginate type, calcium chloride concentration, and agitation speed were studied. Optimization of the enzyme production medium, by the Taguchi method, was also studied. The obtained results showed that optimization of the cell immobilization procedure and medium constituents significantly enhanced the production of alkaline protease. In comparison with the free-cell culture in pre-optimized medium, about 7.3-fold higher productivity was resulted after optimization of the overall procedure. Repeated batch mode of operation, using optimized conditions, resulted in continuous production of the alkaline protease for 13 batches in 19 days.  相似文献   

11.
The synthesis of polyglutamic acid (PGA) was repressed by exogenous glutamate in strains of Bacillus licheniformis but not in strains of Bacillus subtilis, indicating a clear difference in the regulation of synthesis of capsular slime in these two species. Although extracellular gamma-glutamyltranspeptidase (GGT) activity was always present in PGA-producing cultures of B. licheniformis under various growth conditions, there was no correlation between the quantity of PGA and enzyme activity. Moreover, the synthesis of PGA in the absence of detectable GGT activity in B. subtilis S317 indicated that this enzyme was not involved in PGA biosynthesis in this bacterium. Glutamate repression of PGA biosynthesis may offer a simple means of preventing unwanted slime production in industrial fermentations using B. licheniformis.  相似文献   

12.
Multi-parameter flow cytometry was used to monitor the population dynamics of Bacillus licheniformis continuous cultivations and the physiological responses to a starvation period and a glucose pulse. Using a mixture of two specific fluorescent stains, DiOC6(3) (3,3'-dihexylocarbocyanine iodide), and PI (propidium iodide), flow cytometric analysis revealed cell physiological heterogeneity. Four sub-populations of cells could be easily identified based on their differential fluorescent staining, these correspond to healthy cells (A) stained with DiOC6(3); cells or spores with a depolarised cytoplasmic membrane (B), no staining; cells with a permeabilised depolarised cytoplasmic membrane (C), stained with PI; and permeablised cells with a disrupted cytoplasmic membrane 'ghost cells' (D), stained with both DiOC6(3) and PI. Transmission electron micrographs of cells starved of energy showed different cell lysis process stages, highlighting 'ghost cells' which were associated with the double stained sub-population. It was shown, at the individual cell level, that there was a progressive inherent fluctuation in physiological heterogeneity in response to changing environmental conditions. All four sub-populations were shown to be present during glucose-limited continuous cultures, revealing a higher physiological stress level when compared with a glucose pulsed batch. A starvation period (batch without additional nutrients) increased the number of cells in certain sub-populations (cells with depolarised cytoplasmic membranes and cells with permeabilised depolarised cytoplasmic membranes), indicating that such stress may be caused by glucose limitation. Such information could be used to enhance process efficiency.  相似文献   

13.
14.
15.
16.
Regulation of alanine dehydrogenase in Bacillus (licheniformis)   总被引:3,自引:2,他引:1       下载免费PDF全文
Cell extracts of Bacillus licheniformis were found to contain nicotinamide adenine dinucleotide (NAD)-dependent l-alanine dehydrogenase (ADH) (l-alanine: NAD oxidoreductase, EC 1.4.1.1). High specific activities (3.5 to 6.0 IU/mg of protein) were found in extracts of cells throughout growth cycles only when l-alanine served as the primary source of carbon or carbon and nitrogen. Specific activities were minimal (0.02 to 0.04 IU/mg of protein) during growth on glucose, but increased at least sevenfold during the first 5 h of postlogarithmic-phase metabolism. Addition of 10 mM glucose to cultures during logarithmic-phase growth on l-alanine resulted in a rapid decrease in enzyme activity. Addition of 20 mM l-alanine to cells near the completion of log-phase growth on glucose resulted in a 20-fold increase in ADH specific activity during less than one cell generation. Extracts of postlogarithmic-phase cells cultured on glucose, malate, l-glutamate, or Casamino Acids contained intermediate levels of ADH activity. The enzyme was partially purified from crude extracts of B. licheniformis, and apparent kinetic constants were estimated. A role for ADH in the catabolism of l-alanine to pyruvate during vegetative growth on l-alanine and during sporulation of cells cultured on glucose is proposed on the basis of these experimental results.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号