首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solution structure of a BolA-like protein from Mus musculus   总被引:2,自引:0,他引:2  
The BolA-like proteins are widely conserved from prokaryotes to eukaryotes. The BolA-like proteins seem to be involved in cell proliferation or cell-cycle regulation, but the molecular function is still unknown. Here we determined the structure of a mouse BolA-like protein. The overall topology is alphabetabetaalphaalphabetaalpha, in which beta(1) and beta(2) are antiparallel, and beta(3) is parallel to beta(2). This fold is similar to the class II KH fold, except for the absence of the GXXG loop, which is well conserved in the KH fold. The conserved residues in the BolA-like proteins are assembled on the one side of the protein.  相似文献   

2.
Short guanine-rich sequences have a tendency to form quadruplexes that are stabilized by G-quartets with specific cation coordination. Quadruplexes are part of telomeres at the ends of chromosomes and play an important role in the regulation of gene expression. In addition, there is a strong interest in the therapeutic and biotechnological potential of quadruplex oligonucleotides. The HIV-integrase aptamer, d(GGGT)(4), demonstrated unusually favorable van't Hoff thermodynamics, and based on NMR studies the aptamer was proposed to fold into an antiparallel structure. Here we probed an apparent discrepancy between the NMR structure and the quadruplex topology suggested by circular dichroism (CD). Systematic thermodynamic analyses of d(GGGT)(4) and variants containing sequence modifications or missing specific nucleotides are consistent with a parallel quadruplex fold. CD studies carried out over a wide concentration range did not support a possible structural transition upon increasing strand concentration. Taken together, both optical and thermodynamic studies performed here strongly support a parallel fold for the d(GGGT)(4) aptamer.  相似文献   

3.
Most structures of neutral lipases and esterases have been found to adopt the common alpha/beta hydrolase fold and contain a catalytic Ser-His-Asp triad. Some variation occurs in both the overall protein fold and in the location of the catalytic triad, and in some enzymes the role of the aspartate residue is replaced by a main-chain carbonyl oxygen atom. Here, we report the crystal structure of pectin methylesterase that has neither the common alpha/beta hydrolase fold nor the common catalytic triad. The structure of the Erwinia chrysanthemi enzyme was solved by multiple isomorphous replacement and refined at 2.4 A to a conventional crystallographic R-factor of 17.9 % (R(free) 21.1 %). This is the first structure of a pectin methylesterase and reveals the enzyme to comprise a right-handed parallel beta-helix as seen in the pectinolytic enzymes pectate lyase, pectin lyase, polygalacturonase and rhamnogalacturonase, and unlike the alpha/beta hydrolase fold of rhamnogalacturonan acetylesterase with which it shares esterase activity. Pectin methylesterase has no significant sequence similarity with any protein of known structure. Sequence conservation among the pectin methylesterases has been mapped onto the structure and reveals that the active site comprises two aspartate residues and an arginine residue. These proposed catalytic residues, located on the solvent-accessible surface of the parallel beta-helix and in a cleft formed by external loops, are at a location similar to that of the active site and substrate-binding cleft of pectate lyase. The structure of pectin methylesterase is an example of a new family of esterases.  相似文献   

4.
The three-dimensional structures of two animoacyl-tRNA synthetases, the methionyl-tRNA synthetase from Escherichia coli (MetRS) and the tyrosyl-tRNA synthetase from Bacillus stearothermophilus (TyrRS), show a remarkable similarity over a span of about 140 amino acids. The region of homologous folding corresponds to a five-stranded parallel beta-sheet, including a mononucleotide-binding fold. One cysteine and two histidine residues that were found to be invariant in the amino acid sequences occupy similar places in the nucleotide-binding fold. In TyrRS, these residues are close to the adenylate binding site, and in MetRS to the Mg2+-ATP binding site.  相似文献   

5.
Although progress has been made to determine the native fold of a polypeptide from its primary structure, the diversity of pathways that connect the unfolded and folded states has not been adequately explored. Theoretical and computational studies predict that proteins fold through parallel pathways on funneled energy landscapes, although experimental detection of pathway diversity has been challenging. Here, we exploit the high translational symmetry and the direct length variation afforded by linear repeat proteins to directly detect folding through parallel pathways. By comparing folding rates of consensus ankyrin repeat proteins (CARPs), we find a clear increase in folding rates with increasing size and repeat number, although the size of the transition states (estimated from denaturant sensitivity) remains unchanged. The increase in folding rate with chain length, as opposed to a decrease expected from typical models for globular proteins, is a clear demonstration of parallel pathways. This conclusion is not dependent on extensive curve-fitting or structural perturbation of protein structure. By globally fitting a simple parallel-Ising pathway model, we have directly measured nucleation and propagation rates in protein folding, and have quantified the fluxes along each path, providing a detailed energy landscape for folding. This finding of parallel pathways differs from results from kinetic studies of repeat-proteins composed of sequence-variable repeats, where modest repeat-to-repeat energy variation coalesces folding into a single, dominant channel. Thus, for globular proteins, which have much higher variation in local structure and topology, parallel pathways are expected to be the exception rather than the rule.  相似文献   

6.
We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.  相似文献   

7.
A folding topology for the homodimeric N-terminal domain (IIA, 2 × 14 kDa) of the hydrophilic subunit (IIABman) of the mannose transporter of E. coli is proposed. The prediction is based on (i) tertiary structure prediction methods, and (ii) functional properties of site-directed mutants in correlation with NMR-derived α/β secondary structure data. The 3D structure profile suggested that the overall fold of IIA is similar to that of the unrelated protein, flavodoxin, which is an open-stranded parallel β-sheet with a strand order of 5 4 3 1 2. The 3D model of IIA, constructed using the known atomic structure of flavodoxin, is consistent with the results from site-directed mutagenesis. Recently NMR results confirmed the open parallel β-sheet with a strand order of 4 3 12 (residues 1-120) of our model whereas β-strand 5 (residues 127–130) was shown to be antiparallel to β-strand 4. The correctly predicted fold includes 90% of the monomeric subunit sequence and contains all functional sites of the IIA domain.  相似文献   

8.
The aromatic diacid residue 4,6-dibenzofuranbispropionic acid (1) was designed to nucleate a parallel beta-sheet-like structure in small peptides in aqueous solution via a hydrogen-bonded hydrophobic cluster. Even though a 14-membered ring hydrogen bond necessary for parallel beta-sheet formation is favored in simple amides composed of 1, this hydrogen bonding interaction does not appear to be sufficient to nucleate parallel beta-sheet formation in the absence of hydrophobic clustering between the dibenzofuran portion of 1 and the hydrophobic side chains of the flanking alpha-amino acids. The subsequence --hydrophobic residue-1-hydrophobic residue-- is required for folding in the context of a nucleated two-stranded parallel beta-sheet structure. In all cases where the peptidomimetics can fold into two diastereomeric parallel beta-sheet structures having different hydrogen bonding networks, these conformations appear to exchange rapidly. The majority of the parallel beta-sheet structures evaluated herein undergo linked intramolecular folding and self-assembly, affording a fibrillar beta-sheet quaternary structure. To unlink folding and assembly, asymmetric parallel beta-sheet structures incorporating N-methylated alpha-amino acid residues have been synthesized using a new solid phase approach. Residue 1 facilitates the folding of several peptides described within affording a monomeric parallel beta-sheet-like structure in aqueous solution, as ascertained by a variety of spectroscopic and biophysical methods, increasing our understanding of parallel beta-sheet structure.  相似文献   

9.
Cytosine deaminase (CD) catalyzes the deamination of cytosine and is only present in prokaryotes and fungi, where it is a member of the pyrimidine salvage pathway. The enzyme is of interest both for antimicrobial drug design and gene therapy applications against tumors. The structure of Saccharomyces cerevisiae CD has been determined in the presence and absence of a mechanism-based inhibitor, at 1.14 and 1.43 A resolution, respectively. The enzyme forms an alpha/beta fold similar to bacterial cytidine deaminase, but with no similarity to the alpha/beta barrel fold used by bacterial cytosine deaminase or mammalian adenosine deaminase. The structures observed for bacterial, fungal, and mammalian nucleic acid deaminases represent an example of the parallel evolution of two unique protein folds to carry out the same reaction on a diverse array of substrates.  相似文献   

10.
The crystal structure of a pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 (PSCP) has been solved by single-wavelength anomalous diffraction using the absorption peak of bromide anions. Structures of the uninhibited enzyme and of complexes with an inhibitor that was either covalently or noncovalently bound were refined at 1.0-1.4 A resolution. The structure of PSCP comprises a single compact domain with a diameter of approximately 55 A, consisting of a seven-stranded parallel beta-sheet flanked on both sides by a number of helices. The fold of PSCP is a superset of the subtilisin fold, and the covalently bound inhibitor is linked to the enzyme through a serine residue. Thus, the structure of PSCP defines a novel family of serine-carboxyl proteinases (defined as MEROPS S53) with a unique catalytic triad consisting of Glu 80, Asp 84 and Ser 287.  相似文献   

11.
TheCterminusofinsulinBchainplaysanimportantroleintheinteractionofinsulinwithitsreceptor[1—5].Inordertomanifestthespecificroleofthisregion,aseriesofanalogsmutatedorchemicallymodifiedattheCterminusofBchainhavebeenprepared,andtherelationshipbetweenthestruc…  相似文献   

12.
Choi JH  Govaerts C  May BC  Cohen FE 《Proteins》2008,73(1):150-160
The left-handed parallel beta-helix (LbetaH) is a structurally repetitive, highly regular, and symmetrical fold formed by coiling of elongated beta-sheets into helical "rungs." This canonical fold has recently received interest as a possible solution to the fibril structure of amyloid and as a building block of self-assembled nanotubular structures. In light of this interest, we aimed to understand the structural requirements of the LbetaH fold. We first sought to determine the sequence characteristics of the repeats by analyzing known structures to identify positional preferences of specific residues types. We then used molecular dynamics simulations to demonstrate the stabilizing effect of successive rungs and the hydrophobic core of the LbetaH. We show that a two-rung structure is the minimally stable LbetaH structure. In addition, we defined the structure-based sequence preference of the LbetaH and undertook a genome-wide sequence search to determine the prevalence of this unique protein fold. This profile-based LbetaH search algorithm predicted a large fraction of LbetaH proteins from microbial origins. However, the relative number of predicted LbetaH proteins per specie was approximately equal across the genomes from prokaryotes to eukaryotes.  相似文献   

13.
Nuclease A (NucA) from Anabaena sp. is a non-specific endonuclease able to degrade single and double-stranded DNA and RNA. The endonucleolytic activity is inhibited by the nuclease A inhibitor (NuiA), which binds to NucA with 1:1 stoichiometry and picomolar affinity. In order to better understand the mechanism of inhibition, the solution structure of NuiA was determined by NMR methods. The fold of NuiA is an alpha-beta-alpha sandwich but standard database searches by DALI and TOP revealed no structural homologies. A visual inspection of alpha-beta-alpha folds in the CATH database revealed similarities to the PR-1-like fold (SCOP nomenclature). The similarities include the ordering of secondary structural elements, a single helix on one face of the alpha-beta-alpha sandwich, and three helices on the other face. However, a major difference is in the IV helix, which in the PR-1 fold is short and perpendicular to the I and III helices, but in NuiA is long and parallel to the I and III helices. Additionally, a strand insertion in the beta-sheet makes the NuiA beta-sheet completely antiparallel in organization. The fast time-scale motions of NuiA, characterized by enhanced flexibility of the extended loop between helices III and IV, also show similarities to P14a, which is a PR-1 fold. We propose that the purpose of the PR-1 fold is to form a stable scaffold to present this extended structure for biological interactions with other proteins. This hypothesis is supported by data that show that when NuiA is bound to NucA significant changes in chemical shift occur in the extended loop between helices III and IV.  相似文献   

14.
Numerous biological functions are attributed to the peripheral-type benzodiazepine receptor (PBR) recently renamed translocator protein (TSPO). The best characterized function is the translocation of cholesterol from the outer to inner mitochondrial membrane, which is a rate-determining step in steroid biosynthesis. TSPO drug ligands have been shown to stimulate pregnenolone formation by inducing TSPO-mediated translocation of cholesterol. Until recently, no direct structural data on this membrane protein was available. In a previous paper, we showed that a part of the mouse TSPO (mTSPO) C-terminal region adopts a helical conformation, the side-chain distribution of which provides a groove able to fit a cholesterol molecule. We report here on the overall structural properties of mTSPO. This study was first undertaken by dissecting the protein sequence and studying the conformation of five peptides encompassing the five putative transmembrane domains from (1)H-NMR data. The secondary structure of the recombinant protein in micelles was then studied using CD spectroscopy. In parallel, the stability of its tertiary fold was probed using (1)H-(15)N NMR. This study provides the first experimental evidence for a five-helix fold of mTSPO and shows that the helical conformation of each transmembrane domain is mainly formed through local short-range interactions. Our data show that, in micelles, mTSPO exhibits helix content close to what is expected but an unstable tertiary fold. They reveal that the binding of a drug ligand that stimulates cholesterol translocation is able to stabilize the mTSPO tertiary structure.  相似文献   

15.
The folding mechanism of outer membrane proteins (OMPs) of Gram-negative bacteria into lipid bilayers has been studied using OmpA of E. coli and FomA of F. nucleatum as examples. Both, OmpA and FomA are soluble in unfolded form in urea and insert and fold into phospholipid bilayers upon strong dilution of the denaturant urea. OmpA is a structural protein and forms a small ion channel, composed of an 8-stranded transmembrane beta-barrel domain. FomA is a voltage-dependent porin, predicted to form a 14 stranded beta-barrel. Both OMPs fold into a range of model membranes of very different phospholipid compositions. Three membrane-bound folding intermediates of OmpA were discovered in folding studies with dioleoylphosphatidylcholine bilayers that demonstrated a highly synchronized mechanism of secondary and tertiary structure formation of beta-barrel membrane proteins. A study on FomA folding into lipid bilayers indicated the presence of parallel folding pathways for OMPs with larger transmembrane beta-barrels.  相似文献   

16.
All tick proteins assigned to the lipocalin family lack the structural conserved regions (SCRs) that are characteristic of the kernel lipocalins and can thus be classified as outliers. These tick proteins have been assigned to the tick lipocalin family based on database searches that indicated homology between tick sequences and the fact that the histamine binding protein (HBP2) from the hard tick Rhipicephalus appendiculatus (Ixodidae) shows structural similarity to the lipocalin fold. Sequence identity between kernel and outlier lipocalins falls below 20% and the question raised is whether the outlier and kernel lipocalins are truly homologous. More specifically in the case of the tick lipocalins, whether their structural fold is derived from the lipocalin fold or whether convergent evolution resulted in the generation of the basic lipocalin-like fold which consists of an eight stranded continuous anti-parallel beta-barrel terminated by a C-terminal alpha-helix that lies parallel to the barrel. The current study determined the gene structure for HBP2 and TSGP1, TSGP2 and TSGP4, lipocalins identified from the soft tick Ornithodoros savignyi (Argasidae). All tick lipocalins have four introns (A-D) with conserved positions and phases within the tick lipocalin sequence alignment. The positions and phase information are also conserved with regard to the rest of the lipocalin family. Phylogenetic analysis using this information shows conclusively that tick lipocalins are evolutionary related to the rest of the lipocalin family. Tick lipocalins are grouped within a monophyletic clade that indicates a monophyletic origin within the tick lineage and also group with the other arthropod lipocalins in a larger clade. Phylogenetic analysis of sequence alignments based on conserved secondary structure of the lipocalin fold support the conclusions from the gene structure trees. These results indicate that exon-intron arrangement can be useful for the inclusion of outlier lipocalins within the larger lipocalin family.  相似文献   

17.
Shaw E  McCue LA  Lawrence CE  Dordick JS 《Proteins》2002,47(2):163-168
The alpha/beta hydrolases constitute a large protein superfamily that mainly consists of enzymes that catalyze a diverse range of reactions. These proteins exhibit the alpha/beta hydrolase fold, the essential features of which have recently been delineated: the presence of at least five parallel beta-strands, a catalytic triad in a specific order (nucleophile-acid-histidine), and a nucleophilic elbow. Because of the difficulties experimentally in identifying protein structures, we have used a Bayesian computational algorithm (PROBE) to identify the members of this superfamily based on distant sequence relationships. We found that the presence of five sequence motifs, which contain residues important for substrate binding and stabilization of the fold, are required for membership in this superfamily. The superfamily consists of at least 909 members, including the N-myc downstream regulated proteins, which are believed to be involved in cell differentiation. Unlike most of the other superfamily members, the N-myc downstream regulated proteins have never been proposed to possess the alpha/beta hydrolase fold and do not appear to be hydrolases.  相似文献   

18.
Most secondary structure prediction programs do not distinguish between parallel and antiparallel beta-sheets. However, such knowledge would constrain the available topologies of a protein significantly, and therefore aid existing fold recognition algorithms. For this reason, we propose a technique which, in combination with existing secondary structure programs such as PSIPRED, allows one to distinguish between parallel and antiparallel beta-sheets. We propose the use of a support vector machine (SVM) procedure, BETTY, to predict parallel and antiparallel sheets from sequence. We found that there is a strong signal difference in the sequence profiles which SVMs can efficiently extract. With strand type assignment accuracies of 90.7% and 83.3% for antiparallel and parallel strands, respectively, our method adds considerably to existing information on current 3-class secondary structure predictions. BETTY has been implemented as an online service which academic researchers can access from our website http://www.fz-juelich.de/nic/cbb/service/service.php.  相似文献   

19.
The PR-2d promoter/uidA (GUS) gene construct was introduced into the cucumber (Cucumis sativus L.) genome and several transgenic lines were produced. Activation of the PR-2d promoter was investigated in these plants in response to inoculation with fungal pathogens and after salicylic acid (SA) or cold treatments. Treatment with exogenous SA increased GUS activity 2 to 11 fold over that of the control. Endogenous SA and its conjugate salicylic acid glucoside (SAG) rose in parallel after inoculation with the fungal pathogen Pseudoperonospora cubensis, with SAG becoming the predominant form. The free SA levels increased 15 fold above the basal level at 5 dpi and preceded the induction of the PR-2d promoter by five days, which occurred at 10 dpi with a 12 fold increase over the control. Inoculation with another fungal pathogen, Erysiphe polyphage, increased GUS activity 4 to 44 fold over that of the control. During normal development of flowers in the cucumber, the PR-2d/uidA gene expressed in the floral organs was similar to that of the primary host. In addition, we present the first evidence that the PR-2d promoter was induced (624 fold) under cold stress. We demonstrate that in the heterologous state the gene construct was expressed according to the signalling pattern of the native species and was stably transmitted to progeny over four generations.  相似文献   

20.
Mechanical and computational models consisting of flow channels with convergent and oscillating constrictions have been applied to study the dynamics of human vocal fold vibration. To the best of our knowledge, no mechanical model has been studied using a material substitute with similar physical properties to the human vocal fold for surgical experimentation. In this study, we design and develop a mechanical larynx with agarose as a vocal fold substitute, and assess its suitability for surgical experimentation. Agarose is selected as a substitute for the vocal fold as it exhibits similar nonlinear hyperelastic characteristics to biological soft tissue. Through uniaxial compression and extension tests, we determined that agarose of 0.375% concentration most closely resembles the vocal fold mucosa and ligament of a 20-year old male for small tensile strain with an R(2) value of 0.9634 and root mean square error of 344.05±39.84?Pa. Incisions of 10 mm lengthwise and 3 mm in depth were created parallel to the medial edge on the superior surface of agar phantom. These were subjected to vibrations of 80, 130, and 180 Hz, at constant amplitude of 0.9 mm over a period of 10 min each in the mechanical larynx model. Lateral expansion of the incision was observed to be most significant for the lower frequency of 80 Hz. This model serves as a basis for future assessments of wound closure techniques during microsurgery to the vocal fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号