首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic Ca(2+) oscillations can be due to cycles of release and re-uptake of internally stored Ca(2+). To investigate the nature of these Ca(2+) stores, we expressed the Pmr1 Ca(2+) pump of Caenorhabditis elegans in COS-1 cells and pretreated the cells with thapsigargin to prevent Ca(2+) uptake by the sarco(endo)plasmic reticulum Ca(2+)-ATPase. Pmr1 co-localized with the Golgi-specific 58K protein and was targeted to a Ca(2+) store that was less leaky for Ca(2+) than the endoplasmic reticulum and whose inositol trisphosphate receptors were less sensitive to inositol trisphosphate and ATP than those in the endoplasmic reticulum. ATP-stimulated Pmr1-overexpressing cells responded after a latency to extracellular Ca(2+) with a regenerative Ca(2+) signal, which could be prevented by caffeine. They also produced very stable ilimaquinone-sensitive baseline Ca(2+) spikes, even in the presence of thapsigargin. Such responses never occurred in non-transfected cells or in cells that overexpressed the type-1 sarco(endo)plasmic reticulum Ca(2+)-ATPase. Abortive Ca(2+) spikes also occurred in histamine-stimulated untransfected HeLa cells pretreated with thapsigargin, and they too were inhibited by ilimaquinone. We conclude that the Pmr1-induced Ca(2+) store, which probably corresponds to the Golgi compartment, can play a crucial role in setting up baseline Ca(2+) spiking.  相似文献   

2.
Mast cells are secretory cells that release their granules, which contain inflammatory mediators. Some recent data suggested that cytoskeletons play a role in this process. However, the role of microtubules in Ca2+ signaling has not yet been well defined. In this study, we demonstrate that the microtubule cytoskeleton is important to maintain Ca2+ influx in the degranulation pathway of mast cells, using the microtubule depolymerizers nocodazole and colchicine. The microtubule depolymerizers inhibited Ag-induced degranulation in RBL-2H3 cells and bone marrow-derived mast cells. When the cells were stimulated with Ag in the presence of the microtubule depolymerizers, the Ca2+ influx was decreased without affecting Ca2+ release from the endoplasmic reticulum (ER). Capacitative Ca2+ entry, which was induced by inhibitors of Ca(2+)-ATPase in the ER membrane, thapsigargin and cyclopiazonic acid, was also decreased by nocodazole. Fluorescent probe analysis demonstrated that nocodazole disrupted microtubule formation and changed the cytoplasmic distribution of the ER. The microtubule depolymerizers attenuated the passive cutaneous anaphylaxis reaction in back skin of Sprague Dawley rats. These results suggest that the microtubule cytoskeleton in mast cells is important to maintain Ag-induced capacitative Ca2+ entry, which is responsible for degranulation and the allergic response.  相似文献   

3.
The positioning and dynamics of organelles depend on membrane-cytoskeleton interactions. Mitochondria relocate along microtubules (MT), but it is not clear whether MT have direct effects on mitochondrial function. Using two-photon microscopy and the mitochondrial fluorescent dyes rhodamine 123 and Rhod-2, we showed that Taxol and nocodazole, which correspondingly stabilize and disrupt MT, decreased potential and Ca(2+) in the mitochondria of brain stem pre-Botzinger complex neurons. Without changing basal cytoplasmic Ca(2+) ([Ca(2+)](i)), Taxol promoted the generation of [Ca(2+)](i) spikes in dendrites. These spikes were abolished after blockade of Ca(2+) influx and after depletion of internal Ca(2+) stores, indicating the involvement of Ca(2+)-induced Ca(2+) release. Nocodazole decreased mitochondrial potential and [Ca(2+)](m) and produced a long lasting increase in [Ca(2+)](i). MT-acting drugs depolarized single immobilized mitochondria and released previously stored Ca(2+). All of these effects were inhibited by pretreatment with blockers of mitochondrial permeability transition pore (mPTP), cyclosporin A, and 2-aminoethoxydiphenyl borate. Induction of mPTP by Taxol and nocodazole was confirmed by using a calcein/Co(2+) imaging technique. Electron and optical microscopy revealed tubulin bound to mitochondria. Mitochondria, MT, and endoplasmic reticulum (ER) showed strong co-localization, the degree of which decreased after MT were disrupted. We propose that changes in the structure of MT by Taxol and nocodazole promote the induction of mPTP. Subsequent Ca(2+) efflux stimulates the Ca(2+) release from the ER that drives spontaneous [Ca(2+)](i) transients. Thus, close positioning of mitochondria to the ER as determined by MT can be essential for the local [Ca](i) signaling in neurons.  相似文献   

4.
Failure of calcium microdomain generation and pathological consequences   总被引:2,自引:0,他引:2  
Normal physiological regulation depends on Ca(2+) microdomains, because there is a need to spatially separate Ca(2+) regulation of different cellular processes. It is only possible to generate local Ca(2+) signals transiently; so, there is an important functional link between Ca(2+) spiking and microdomains. The pancreatic acinar cell provides a useful cell biological model, because of its clear structural and functional polarization. Although local Ca(2+) spiking in the apical (granular) microdomain regulates fluid and enzyme secretion, prolonged global elevations of the cytosolic Ca(2+) concentration are associated with the human disease acute pancreatitis, in which proteases in the granular region become inappropriately activated and digest the pancreas and its surroundings. A major cause of pancreatitis is alcohol abuse and it has now been established that fatty acid ethyl esters and fatty acids, non-oxidative alcohol metabolites, are principally responsible for causing the acinar cell damage. The fatty acid ethyl esters release Ca(2+) from the endoplasmic reticulum and the fatty acids inhibit markedly mitochondrial ATP generation, which prevents the acinar cell from disposing of the excess Ca(2+) in the cytosol. Because of the abolition of ATP-dependent Ca(2+) pump activity, all intracellular Ca(2+) concentration gradients disappear and the most important part of the normal regulatory machinery is thereby destroyed. The end stage is necrosis.  相似文献   

5.
Hormones and neurotransmitters mobilize Ca(2+) from the endoplasmic reticulum via inositol trisphosphate (IP(3)) receptors, but how a single target cell encodes different extracellular signals to generate specific cytosolic Ca(2+) responses is unknown. In pancreatic acinar cells, acetylcholine evokes local Ca(2+) spiking in the apical granular pole, whereas cholecystokinin elicits a mixture of local and global cytosolic Ca(2+) signals. We show that IP(3), cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate (NAADP) evoke cytosolic Ca(2+) spiking by activating common oscillator units composed of IP(3) and ryanodine receptors. Acetylcholine activation of these common oscillator units is triggered via IP(3) receptors, whereas cholecystokinin responses are triggered via a different but converging pathway with NAADP and cyclic ADP-ribose receptors. Cholecystokinin potentiates the response to acetylcholine, making it global rather than local, an effect mediated specifically by cyclic ADP-ribose receptors. In the apical pole there is a common early activation site for Ca(2+) release, indicating that the three types of Ca(2+) release channels are clustered together and that the appropriate receptors are selected at the earliest step of signal generation.  相似文献   

6.
We studied the role of the Pmr1-containing Ca(2+) store in COS-1 cells endowed with a functional endoplasmic reticulum. Transfected cells could be recognized by using a green-fluorescent-protein (GFP)-tagged form of Pmr1. Pmr1-GFP fluorescence showed a typical juxtanuclear Golgi-like distribution. Pmr1-GFP-containing cells with functional endoplasmic reticulum responded to 100 microM ATP with baseline Ca(2+) spiking, while non-transfected cells produced an initial Ca(2+) peak followed by a long-lasting plateau. The Ca(2+) signal often appeared after a long latency in Pmr1-GFP-expressing cells. ATP-stimulated Pmr1-GFP-expressing cells with functional endoplasmic reticulum responded after a latency period to extracellular Ca(2+) with a regenerative Ca(2+) signal, while non-transfected control cells responded with an immediate slow rise in free cytosolic Ca(2+) concentration. These results demonstrate the importance of the Pmr1-containing Ca(2+) store in generating or modifying cellular Ca(2+) signals.  相似文献   

7.
Rhizobium-made Nod factors induce rapid changes in both Ca(2+) and gene expression. Mutations and inhibitors that abolish Nod-factor-induced Ca(2+) spiking block gene induction, indicating a specific role for Ca(2+) spiking in signal transduction. We used transgenic Medicago truncatula expressing a "cameleon" Ca(2+) sensor to assess the relationship between Nod-factor-induced Ca(2+) spiking and the activation of downstream gene expression. In contrast to ENOD11 induction, Ca(2+) spiking is activated in all root-hair cells and in epidermal or pre-emergent root hairs cells in the root tip region. Furthermore, cortical cells immediately below the epidermal layer also show slow Ca(2+) spiking and these cells lack Nod-factor-induced ENOD11 expression. This indicates a specialization in nodulation gene induction downstream of Nod-factor perception and signal transduction. There was a gradient in the frequency of Ca(2+) spiking along the root, with younger root-hair cells having a longer period between spikes than older root hairs. Using a Ca(2+)-pump inhibitor to block Ca(2+) spiking at various times after addition of Nod factor, we conclude that about 36 consecutive Ca(2+) spikes are sufficient to induce ENOD11-GUS expression in root hairs. To determine if the length of time of Ca(2+) spiking or the number of Ca(2+) spikes is more critical for Nod-factor-induced ENOD11 expression, jasmonic acid (JA) was added to reduce the rate of Nod-factor-induced Ca(2+) spiking. This revealed that even when the period between Ca(2+) spikes was extended, an equivalent number of Ca(2+) spikes were required for the induction of ENOD11. However, this JA treatment did not affect the spatial patterning of ENOD11-GUS expression suggesting that although a minimal number of Ca(2+) spikes are required for Nod-factor-induced gene expression, other factors restrict the expression of ENOD11 to a subset of responding cells.  相似文献   

8.
It remains unclear how different intracellular stores could interact and be recruited by Ca(2+)-releasing messengers to generate agonist-specific Ca(2+) signatures. In addition, refilling of acidic stores such as lysosomes and secretory granules occurs through endocytosis, but this has never been investigated with regard to specific Ca(2+) signatures. In pancreatic acinar cells, acetylcholine (ACh), cholecystokinin (CCK), and the messengers cyclic ADP-ribose (cADPR), nicotinic acid adenine dinucleotide phosphate (NAADP), and inositol 1,4,5-trisphosphate (IP(3)) evoke repetitive local Ca(2+) spikes in the apical pole. Our work reveals that local Ca(2+) spikes evoked by different agonists all require interaction of acid Ca(2+) stores and the endoplasmic reticulum (ER), but in different proportions. CCK and ACh recruit Ca(2+) from lysosomes and from zymogen granules through different mechanisms; CCK uses NAADP and cADPR, respectively, and ACh uses Ca(2+) and IP(3), respectively. Here, we provide pharmacological evidence demonstrating that endocytosis is crucial for the generation of repetitive local Ca(2+) spikes evoked by the agonists and by NAADP and IP(3). We find that cADPR-evoked repetitive local Ca(2+) spikes are particularly dependent on the ER. We propose that multiple Ca(2+)-releasing messengers determine specific agonist-elicited Ca(2+) signatures by controlling the balance among different acidic Ca(2+) stores, endocytosis, and the ER.  相似文献   

9.
We have characterized the effects of the antimitotic drug paclitaxel (Taxol(TM)) on the Ca(2+) signaling cascade of terminally differentiated mouse pancreatic acinar cells. Using single cell fluorescence techniques and whole-cell patch clamping to record cytosolic Ca(2+) and plasma membrane Ca(2+)-dependent Cl(-) currents, we find that paclitaxel abolishes cytosolic Ca(2+) oscillations and in more than half of the cells it also induces a rapid, transient cytosolic Ca(2+) response. This response is not affected by removal of extracellular Ca(2+) indicating that paclitaxel releases Ca(2+) from an intracellular Ca(2+) store. Using saponin-permeabilized cells, we show that paclitaxel does not affect Ca(2+) release from an inositol trisphosphate-sensitive store. Furthermore, up to 15 min after paclitaxel application, there is no significant effect on either microtubule organization or on endoplasmic reticulum organization. The data suggest a non-endoplasmic reticulum source for the intracellular Ca(2+) response. Using the mitochondrial fluorescent dyes, JC-1 and Rhod-2, we show that paclitaxel evoked a rapid decline in the mitochondrial membrane potential and a loss of mitochondrial Ca(2+). Cyclosporin A, a blocker of the mitochondrial permeability transition pore, blocked both the paclitaxel-induced loss of mitochondrial Ca(2+) and the effect on Ca(2+) spikes. We conclude that paclitaxel exerts rapid effects on the cytosolic Ca(2+) signal via the opening of the mitochondrial permeability transition pore. This work indicates that some of the more rapidly developing side effects of chemotherapy might be due to an action of antimitotic drugs on mitochondrial function and an interference with the Ca(2+) signal cascade.  相似文献   

10.
Intracellular Ca(2+) spikes trigger cell proliferation, differentiation and cytoskeletal reorganization. In addition to Ca(2+) spiking that can be initiated by a ligand binding to its receptor, exposure to electromagnetic stimuli has also been shown to alter Ca(2+) dynamics. Using neuronal cells differentiated from a mouse embryonic stem cell line and a custom-built, frequency-tunable applicator, we examined in real time the altered Ca(2+) dynamics and observed increases in the cytosolic Ca(2+) in response to nonthermal radiofrequency (RF)-radiation exposure of cells from 700 to 1100 MHz. While about 60% of control cells (not exposed to RF radiation) were observed to exhibit about five spontaneous Ca(2+) spikes per cell in 60 min, exposure of cells to an 800 MHz, 0.5 W/kg RF radiation, for example, significantly increased the number of Ca(2+) spikes to 15.7+/-0.8 (P<0.05). The increase in the Ca(2+) spiking activities was dependent on the frequency but not on the SAR between 0.5 to 5 W/kg. Using pharmacological agents, it was found that both the N-type Ca(2+) channels and phospholipase C enzymes appear to be involved in mediating increased Ca(2+) spiking. Interestingly, microfilament disruption also prevented the Ca(2+) spikes. Regulation of Ca(2+) dynamics by external physical stimulation such as RF radiation may provide a noninvasive and useful tool for modulating the Ca(2+)-dependent cellular and molecular activities of cells seeded in a 3D environment for which only a few techniques are currently available to influence the cells.  相似文献   

11.
Sievers A  Busch MB 《Planta》1992,188(4):619-622
Cress (Lepidium sativum L.) roots were treated with 20 microM cyclopiazonic acid (CPA), an inhibitor of the Ca(2+)-transporting ATPases present in the sarcoplasmic/endoplasmic reticulum of animals and the endoplasmic reticulum of plants, in order to investigate its effect on the gravitropic response. Root growth was not significantly reduced by the applied dose of CPA, but the gravitropic response (curvature) was drastically inhibited. We hypothesize that the ER Ca(2+)-ATPase of statocytes is involved in transduction of the gravity stimulus and that CPA disturbs a cytosolic Ca2+ signal necessary for graviperception.  相似文献   

12.
The effects of subacute, acute and chronic ethanol exposure on the activity of Ca(2+)-accumulating systems of mitochondria and endoplasmic reticulum in myometrial cells of nonpregnant estrogen-treated rats were studied. It has been shown that the activity of Ca(2+)-accumulating system of mitochondria was higher than the activity of Ca(2+)-accumulating system of endoplasmic reticulum in myometrial cells from control, acute and subacute treated with ethanol rats. Under ethanol chronical assumption both Ca(2+)-accumulation in mitochondria and Ca(2+)-transporting activity of endoplasmic reticulum are inhibited. In the latter ease Mg2+, ATP-dependent Ca(2+)-pump lost its sensitivity to oxytocin.  相似文献   

13.
T cell activation by APC requires cytosolic Ca(2+) ([Ca(2+)](i)) elevation. Using two-photon microscopy, we visualized Ca(2+) signaling and motility of murine CD4(+) T cells within lymph node (LN) explants under control, inflammatory, and immunizing conditions. Without Ag under basal noninflammatory conditions, T cells showed infrequent Ca(2+) spikes associated with sustained slowing. Inflammation reduced velocities and Ca(2+) spiking in the absence of specific Ag. During early Ag encounter, most T cells engaged Ag-presenting dendritic cells in clusters, and showed increased Ca(2+) spike frequency and elevated basal [Ca(2+)](i). These Ca(2+) signals persisted for hours, irrespective of whether T cells were in contact with visualized dendritic cells. We propose that sustained increases in basal [Ca(2+)](i) and spiking frequency constitute a Ca(2+) signaling modality that, integrated over hours, distinguishes immunogenic from basal state in the native lymphoid environment.  相似文献   

14.
A model for cytosolic Ca2+ spikes is presented that incorporates continual influx of Ca2+, uptake into an intracellular compartment, and Ca(2+)-induced Ca2+ release from the compartment. Two versions are used. In one, release is controlled by explicit thresholds, while in the other, release is a continuous function of cytosolic and compartmental [Ca2+]. Some model predictions are as follows. Starting with low Ca2+ influx and no spikes: (1) induction of spiking when Ca2+ influx is increased. Starting with spikes: (2) increase in magnitude and decrease in frequency when influx is reduced; (3) inhibition of spiking if influx is greatly reduced; (4) decrease in the root-mean-square value when influx is increased; and (5) elimination of spiking if influx is greatly increased. Since there is good evidence that hyperpolarizing spikes reflect cytosolic Ca2+ spikes, we used electrophysiological measurements to test the model. Each model prediction was confirmed by experiments in which Ca2+ influx was manipulated. However, the original spike activity tended to return within 5-30 min, indicating a cellular resetting process.  相似文献   

15.
Summary Explants from mouse jejunum were cultured for 3–7 h in the absence (control) or presence of colchicine (100 gm/ml) or nocodazole (10 g/ml). In recovery experiments, expiants were cultured in fresh medium for an additional period. To label glycoproteins, 3H-fucose was added during the last 3 or 6 h of the initial culture or recovery period. Subcellular fractionation studies revealed that colchicine and nocodazole inhibited migration of labelled glycoproteins to the brush border (P2) by 40–45%. Radioautographic studies of absorptive cells showed that colchicine and nocodazole inhibited labelling of the microvillous border by 67% and 87%, while labelling of the basolateral plasma membrane increased by 114% and 275%. Immunocytochemical studies revealed that both colchicine and nocodazole caused the virtual disappearance of the microtubular network in the absorptive cells. It is possible that some glycoproteins normally destined for the microvillous border are rerouted to the basolateral membrane. The observed loss of microtubules after drug treatment suggests that microtubules may play a role in the intracellular migration of membrane glycoproteins. Additional support for this concept is provided by the fact that in recovery experiments the distribution of label returned to control values after the microtubular network became re-established.  相似文献   

16.
The behavior of biological systems is determined by the properties of their component molecules, but the interactions are usually too complex to understand fully how molecular behavior generates cellular behavior. Ca(2+) signaling by inositol trisphosphate receptors (IP(3)R) offers an opportunity to understand this relationship because the cellular behavior is defined largely by Ca(2+)-mediated interactions between IP(3)R. Ca(2+) released by a cluster of IP(3)R (giving a local Ca(2+) puff) diffuses and ignites the behavior of neighboring clusters (to give repetitive global Ca(2+) spikes). We use total internal reflection fluorescence microscopy of two mammalian cell lines to define the temporal relationships between Ca(2+) puffs (interpuff intervals, IPI) and Ca(2+) spikes (interspike intervals) evoked by flash photolysis of caged IP(3). We find that IPI are much shorter than interspike intervals, that puff activity is stochastic with a recovery time that is much shorter than the refractory period of the cell, and that IPI are not periodic. We conclude that Ca(2+) spikes do not arise from oscillatory dynamics of IP(3)R clusters, but that repetitive Ca(2+) spiking with its longer timescales is an emergent property of the dynamics of the whole cluster array.  相似文献   

17.
The signaling role of the Ca(2+) releaser inositol 1,4, 5-trisphosphate (IP(3)) has been associated with diverse cell functions. Yet, the physiological significance of IP(3) in tissues that feature a ryanodine-sensitive sarcoplasmic reticulum has remained elusive. IP(3) generated by photolysis of caged IP(3) or by purinergic activation of phospholipase Cgamma slowed down or abolished autonomic Ca(2+) spiking in neonatal rat cardiomyocytes. Microinjection of heparin, blocking dominant-negative fusion protein, or anti-phospholipase Cgamma antibody prevented the IP(3)-mediated purinergic effect. IP(3) triggered a ryanodine- and caffeine-insensitive Ca(2+) release restricted to the perinuclear region. In cells loaded with Rhod2 or expressing a mitochondria-targeted cameleon and TMRM to monitor mitochondrial Ca(2+) and potential, IP(3) induced transient Ca(2+) loading and depolarization of the organelles. These mitochondrial changes were associated with Ca(2+) depletion of the sarcoplasmic reticulum and preceded the arrest of cellular Ca(2+) spiking. Thus, IP(3) acting within a restricted cellular region regulates the dynamic of calcium flow between mitochondria and the endoplasmic/sarcoplasmic reticulum. We have thus uncovered a novel role for IP(3) in excitable cells, the regulation of cardiac autonomic activity.  相似文献   

18.
Some chemotherapeutic agents can elicit apoptotic cancer cell death, thereby activating an anticancer immune response that influences therapeutic outcome. We previously reported that anthracyclins are particularly efficient in inducing immunogenic cell death, correlating with the pre-apoptotic exposure of calreticulin (CRT) on the plasma membrane surface of anthracyclin-treated tumor cells. Here, we investigated the role of cellular Ca(2+) homeostasis on CRT exposure. A neuroblastoma cell line (SH-SY5Y) failed to expose CRT in response to anthracyclin treatment. This defect in CRT exposure could be overcome by the overexpression of Reticulon-1C, a manipulation that led to a decrease in the Ca(2+) concentration within the endoplasmic reticulum lumen. The combination of Reticulon-1C expression and anthracyclin treatment yielded more pronounced endoplasmic reticulum Ca(2+) depletion than either of the two manipulations alone. Chelation of intracellular (and endoplasmic reticulum) Ca(2+), targeted expression of the ligand-binding domain of the IP(3) receptor and inhibition of the sarco-endoplasmic reticulum Ca(2+)-ATPase pump reduced endoplasmic reticulum Ca(2+) load and promoted pre-apoptotic CRT exposure on the cell surface, in SH-SY5Y and HeLa cells. These results provide evidence that endoplasmic reticulum Ca(2+) levels control the exposure of CRT.  相似文献   

19.
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) plays a critical role in Ca(2+) homeostasis via sequestration of this ion in the sarco/endoplasmic reticulum. The activity of this pump is inhibited by oxidants and impaired in aging tissues and cardiovascular disease. We have shown previously that the myeloperoxidase (MPO)-derived oxidants HOCl and HOSCN target thiols and mediate cellular dysfunction. As SERCA contains Cys residues critical to ATPase activity, we hypothesized that HOCl and HOSCN might inhibit SERCA activity, via thiol oxidation, and increase cytosolic Ca(2+) levels in human coronary artery endothelial cells (HCAEC). Exposure of sarcoplasmic reticulum vesicles to preformed or enzymatically generated HOCl and HOSCN resulted in a concentration-dependent decrease in ATPase activity; this was also inhibited by the SERCA inhibitor thapsigargin. Decomposed HOSCN and incomplete MPO enzyme systems did not decrease activity. Loss of ATPase activity occurred concurrent with oxidation of SERCA Cys residues and protein modification. Exposure of HCAEC, with or without external Ca(2+), to HOSCN or HOCl resulted in a time- and concentration-dependent increase in intracellular Ca(2+) under conditions that did not result in immediate loss of cell viability. Thapsigargin, but not inhibitors of plasma membrane or mitochondrial Ca(2+) pumps/channels, completely attenuated the increase in intracellular Ca(2+) consistent with a critical role for SERCA in maintaining endothelial cell Ca(2+) homeostasis. Angiotensin II pretreatment potentiated the effect of HOSCN at low concentrations. MPO-mediated modulation of intracellular Ca(2+) levels may exacerbate endothelial dysfunction, a key early event in atherosclerosis, and be more marked in smokers because of their higher SCN(-) levels.  相似文献   

20.
The photosensitizer 9-capronyloxytetrakis (methoxyethyl) porphycene localizes predominantly in the endoplasmic reticulum (ER) and, to a lesser extent, in mitochondria of murine leukemia L1210 cells. Subsequent irradiation results in the loss of ER > mitochondrial Bcl-2 and an apoptotic response. Although an increase in cytosolic Ca(2+) was observed after irradiation, apoptosis was not inhibited by either the presence of the calcium chelator BAPTA or by the mitochondrial uniporter inhibitor ruthenium amino binuclear complex (Ru360). Moreover, neither reagent prevented the loss of Bcl-2. Ruthenium red (RR) devoid of Ru360 prevented Bcl-2 loss, release of Ca(2+) from the ER and the initiation of apoptosis. Since RR was significantly more sensitive than Ru360 to oxidation by singlet oxygen, we attribute the protective effect of RR to the quenching of reactive oxygen species. Although cytosolic and (to a lesser extent) mitochondrial Ca(2+) levels were elevated after photodynamic therapy, these changes were apparently insufficient to contribute to the development of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号