首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
IL-12 is a macrophage-derived cytokine that induces proliferation, cytokine production, and cytotoxic activity of T and NK cells. Signaling through its receptor, IL-12 induces these cellular responses by tyrosine phosphorylation and activation of Janus kinase-2 (Jak-2), Tyk-2, Stat3, and Stat4. We have used tyrphostin B42 (AG490), a Jak-2 inhibitor, to determine the role of Jak-2 kinase in IL-12 signaling and IL-12-induced T cell functions. Treatment of activated T cells with tyrphostin B42 inhibited the IL-12-induced tyrosine phosphorylation and activation of Jak-2 without affecting Tyk-2 kinase. In contrast, treatment with tyrphostin A1 inhibited the tyrosine phosphorylation of Tyk-2 but not that of Jak-2 kinase. Inhibition of either Jak-2 or Tyk-2 leads to a decrease in the IL-12-induced tyrosine phosphorylation of Stat3, but not of Stat4, protein. While inhibition of Jak-2 lead to programmed cell death, the inhibition of Jak-2 or Tyk-2 resulted a decrease in IFN-gamma production. We have further tested the in vivo effects of tyrphostin B42 in experimental allergic encephalomyelitis, a Th1 cell-mediated autoimmune disease. In vivo treatment with tyrphostin B42 decreased the proliferation and IFN-gamma production of neural Ag-specific T cells. Treatment of mice with tyrphostin B42 also reduced the incidence and severity of active and passive EAE. These results suggest that tyrphostin B42 prevents EAE by inhibiting IL-12 signaling and IL-12-mediated Th1 differentiation in vivo.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Mycobacterium tuberculosis (MTB) persists inside macrophages despite vigorous immune responses. MTB and MTB 19-kDa lipoprotein inhibit class II MHC (MHC-II) expression and Ag processing by a Toll-like receptor 2-dependent mechanism that is shown in this study to involve a defect in IFN-gamma induction of class II transactivator (CIITA). Exposure of macrophages to MTB or MTB 19-kDa lipoprotein inhibited IFN-gamma-induced MHC-II expression, but not IL-4-induced MHC-II expression, by preventing induction of mRNA for CIITA (total, type I, and type IV), IFN regulatory factor-1, and MHC-II. MTB 19-kDa lipoprotein induced mRNA for suppressor of cytokine signaling (SOCS)1 but did not inhibit IFN-gamma-induced Stat1 phosphorylation. Furthermore, the lipoprotein inhibited MHC-II Ag processing in SOCS1(-/-) macrophages. MTB 19-kDa lipoprotein did not inhibit translocation of phosphorylated Stat1 to the nucleus or Stat1 binding to and transactivation of IFN-gamma-sensitive promoter constructs. Thus, MTB 19-kDa lipoprotein inhibited IFN-gamma signaling independent of SOCS1 and without interfering with the activation of Stat1. Inhibition of IFN-gamma-induced CIITA by MTB 19-kDa lipoprotein may allow MTB to evade detection by CD4(+) T cells.  相似文献   

11.
The 84-, 91-, and 113-kDa proteins of the ISGF-3 alpha complex are phosphorylated on tyrosine residues upon alpha interferon (IFN-alpha) treatment and subsequently translocate to the nucleus together with a 48-kDa subunit. In this study, we investigated the presence and the functional status of ISGF-3 alpha subunits and Tyk-2 and JAK1 tyrosine kinases in mutant HeLa cells defective in the IFN-alpha/beta and -gamma response. Stable cell fusion analysis revealed a single complementation group among one class (class B) of mutants. The class B mutants contain detectable level of mRNA and proteins of the 84-, 91-, and 113-kDa proteins, but neither the protein nor mRNA is inducible by IFN-alpha or -gamma. The 91-kDa protein IFN-gamma-activated factor fails to be activated into a DNA-binding state after IFN-alpha or -gamma treatment. In addition, the 91-kDa protein is unable to localize in the nucleus after IFN-alpha and -gamma treatment, and the 113-kDa protein fails to translocate after IFN-alpha treatment. Immunoprecipitation studies document a failure of phosphorylation of the 84- or 91-kDa proteins after IFN-alpha or -gamma treatment. Similarly, no tyrosine-phosphorylated 113-kDa protein was detected after IFN-alpha treatment. The inability of class B mutants to phosphorylate the 84-, 91-, or 113-kDa protein on tyrosine residues correlated with the loss of biological response to IFN-alpha and -gamma. The genetic defect appears to be the absence of the tyrosine kinase JAK1. Our data therefore confirm a recent report that JAK1 plays a critical early signaling role for both IFN-alpha/beta and IFN-gamma systems.  相似文献   

12.
13.
Murine interleukin-3 (mIL-3) stimulates the rapid and transient tyrosine phosphorylation of a number of proteins in mIL-3-dependent B6SUtA1 cells. Two of these proteins, p68 and p140, are maximally phosphorylated at tyrosine residues within 2 min of addition of mIL-3. Because 125I-mIL-3 can be cross-linked to both 70- and 140-kDa proteins on intact B6SUtA1 cells, we investigated whether the tyrosine phosphorylated p68 and p140 were these two mIL-3 receptor proteins. Addition of antiphosphotyrosine antibodies (alpha PTyr Abs) to cell lysates from B6SUtA1 cells, to which 125I-mIL-3 had been disuccinimidyl suberate-cross-linked, resulted in the immunoprecipitation of 125I-mIL-3 complexed to both 70- and 140-kDa proteins. To determine if the observed immunoprecipitation pattern was due to the direct interaction of alpha-PTyr Abs with these two mIL-3 receptor proteins or with tyrosine-phosphorylated proteins that were associated with the receptor proteins, cell lysates were treated with 2% sodium dodecyl sulfate, 5% 2-mercaptoethanol, and boiled for 1 min. After removal of sodium dodecyl sulfate and 2-mercaptoethanol, alpha PTyr Abs immunoprecipitated 125I-mIL-3 cross-linked to only the 140-kDa protein. To confirm this finding, 32P-labeled B6SUtA1 cells were treated with biotinylated or fluoresceinated mIL-3. Addition of immobilized streptavidin or antifluorescein antibodies, respectively, to cell lysates from these cells resulted in the enrichment of only a 140-kDa tyrosine phosphorylated protein. Taken together, these results strongly suggest that only the 140-kDa receptor protein is tyrosine phosphorylated upon mIL-3 binding.  相似文献   

14.
15.
Aggregation of the high affinity receptor for IgE (FceRI) on mast cells results in the rapid phosphorylation of tyrosines on the beta and gamma chains of the receptor by the Src family kinase Lyn, which initiates the signaling cascades leading to secretion of inflammatory mediators. The detergent-resistant membranes (DRMs) have been implicated in FcepsilonRI signaling because aggregated receptors emigrate to DRMs that are enriched in certain signaling components. We evaluated the role of DRMs in FcepsilonRI signaling by disruption of DRMs using a cholesterol-binding agent, methyl-beta-cyclodextrin (MBCD). While treatment of rat basophilic leukemia cells with MBCD inhibits degranulation and Ca(2+) mobilization upon aggregation of FcepsilonRI, MBCD hardly affects the aggregation-induced tyrosine phosphorylation of FcepsilonRI as well as other signaling molecules such as phospholipase C-gamma1 (PLC-gamma1). MBCD delocalizes phosphatidylinositol 4,5-bisphosphate from DRMs, which may prevent MBCD-treated cells from producing inositol 1,4,5-trisphosphate by means of activated PLC-gamma1. These data suggest an indispensable role for DRMs in the Ca(2+) response rather than tyrosine phosphorylation, and support a model of receptor phosphorylation in which aggregated FcepsilonRI is tyrosine phosphorylated outside DRMs by constitutively associated Src family kinase Lyn via a transphosphorylation mechanism.  相似文献   

16.
Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling, derivatives were constructed containing an N-terminal myristylation signal for plasma membrane localization and a point mutation (K650E) that confers constitutive kinase activation. A derivative containing all conserved tyrosine residues stimulates cellular transformation and activation of several FGFR3 signaling pathways. Substitution of all nonactivation loop tyrosine residues with phenylalanine rendered this FGFR3 construct inactive, despite the presence of the activating K650E mutation. Addition of a single tyrosine residue, Y724, restored its ability to stimulate cellular transformation, phosphatidylinositol 3-kinase activation, and phosphorylation of Shp2, MAPK, Stat1, and Stat3. These results demonstrate a critical role for Y724 in the activation of multiple signaling pathways by constitutively activated mutants of FGFR3.  相似文献   

17.
A number of cytoplasmic signaling molecules are thought to mediate mitogenic signaling from the activated Neu receptor tyrosine kinase through binding specific phosphotyrosine residues located within the intracellular portion of Neu/c-ErbB-2. An activated neu oncogene containing tyrosine-to-phenylalanine substitutions at each of the known autophosphorylation sites was generated and assessed for its specific transforming potential in Rat1 and NIH 3T3 fibroblasts. Mutation of these sites resulted in a dramatic impairment of the transforming potential of neu. To assess the role of these tyrosine phosphorylation sites in cellular transformation, the transforming potential of a series of mutants in which individual tyrosine residues were restored to this transformation-debilitated neu mutant was evaluated. Reversion of any one of four mutated sites to tyrosine residues restored wild-type transforming activity. While each of these transforming mutants displayed Ras-dependent signaling, the transforming activity of two of these mutants was correlated with their ability to bind either the GRB2 or SHC adapter molecules that couple receptor tyrosine kinases to the Ras signaling pathway. By contrast, restoration of a tyrosine residue located at position 1028 completely suppressed the basal transforming activity of this mutated neu molecule or other transforming neu molecules which possessed single tyrosine residues. These data argue that the transforming potential of activated neu is mediated both by positive and negative regulatory tyrosine phosphorylation sites.  相似文献   

18.
Interferon tau (IFNtau) is the pregnancy recognition signal produced by the conceptus trophectoderm and acts in a paracine manner on the ovine endometrium to increase expression of IFN-stimulated genes primarily in the stroma and deep glandular epithelium, including IFN regulatory factor-1 (IRF-1). The roles of Stat1, Stat2, and IRF-9 in IFNtau regulation of IRF-1 expression were determined using human stromal fibroblasts lacking specific IFN signaling components or complemented with specific Stat1 mutants. In parental (2fTGH) cells treated with IFNtau, Stat1alpha/beta was tyrosine phosphorylated by 15 min, and IRF-1 mRNA and protein increased from 0 to 6 h, was maximal at 6 h, and decreased to 24 h. In contrast, IFNtau did not affect IRF-1 expression in Stat1- and Stat2-deficient cells or in Stat1-deficient cells complemented with Stat1 Y701Q or Stat1 R602L mutants. In Stat1-deficient cells complemented with the Stat1 S727A mutant, Stat1alpha, or Stat1beta and treated with IFNtau, IRF-1 increased from 0 to 6 h, was maximal at 6 h, and decreased thereafter. In IRF-9-deficient cells stimulated with IFNtau, IRF-1 increased from 0 to 6 h but did not exhibit the sharp decline from 6 to 12 h observed in other cells. Collectively, results indicate that IFNtau effect on IRF-1 expression is primarily regulated by tyrosine-phosphorylated Stat1alpha or Stat1beta dimers, whereas the decline of IRF-1 after 6 h of IFNtau treatment is regulated by IRF-9.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号