首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) The total amount of highly basic proteins in acid extracts of whole ox brain, ox white matter and ox grey matter was determined quantitatively after electrophoresis on 5% polyacrylamide gels at pH 10-6 in the presence of 8 M-urea. (2) Ox white matter gave 13 mg and ox grey matter 2 mg of highly basic proteins per g fresh tissue on treatment with 0-03 n -HCl. The yield of total basic proteins of ox white matter increased to 17-6 mg/g fresh brain on stepwise extraction at pH 3-0, 2-0 and 1-0; the extract at pH 3.0 accounted for 90 per cent of the total basic proteins. (3) The high encephalitogenic activity of the fraction of highly basic proteins extracted at pH 3.0 from ox white matter indicated that these basic proteins were derived from myelin. It is suggested that the amount of basic proteins in a sample of brain extracted under these conditions is proportional to the amount of white matter in the sample. (4) The encephalitogenic (myelin) basic protein fraction was homogeneous with respect to molecular size but could be resolved into at least six components by electrophoresis at high pH. (5) The myelin basic proteins extracted from ox white matter had lower electrophoretic mobilities at high pH than did those of two basic proteins of rat brain apparently derived from myelin.  相似文献   

2.
The effects on myelin of autolysis in situ after death and after purification were studied in normal brains and spinal cords and in those made edematous as a result of chronic triethyl tin (TET) feeding. Myelin prepared from normal and edematous brains and spinal cords autolyzed for 12 h at 4°C contained only slightly less basic protein than that prepared from freshly killed animals. The amounts of a light lipid-protein fraction (dissociated myelin) usually obtained during purification of myelin from edematous CNS were about the same in tissue from freshly killed rats and those autolyzed for 12 h at 4°C. Autolysis for 12 h at room temperature resulted in formation of large amounts of dissociated myelin and loss of basic protein, but more dissociation and basic protein loss occurred in CNS from edematous brains and spinal cords than from the normal. Purified myelin prepared from freshly-killed normal and TET-fed rats was incubated at 37°C in media of several ionic strengths. In Krebs-Ringer bicarbonate (physiological extracellular fluid) extensive dissociation of myelin occurred with much less in 0.04 M-Tris buffer, pH 7.2, and only small amounts were formed in 0.01 M-Tris. In all cases myelin from edematous CNS formed more dissociated fraction than did the normal myelin. Basic protein loss was also proportional to the ionic strength of the media, but there was no difference in loss between normal and TET-myelin. Two different factors, proteolysis and physical extraction of basic protein by salt solutions, may be contributing to myelin dissociation and loss of basic protein.  相似文献   

3.
Uridine Transport and Metabolism in the Central Nervous System   总被引:4,自引:2,他引:2  
Myelin and myelin-containing (P3) fractions were prepared from human white matter by discontinuous sucrose gradient centrifugation. The myelin isolated from each of the fractions of different densities was morphologically and biochemically distinct. Light myelin fractions consisted of compact, multilamellar myelin, whereas the denser fractions consisted predominantly of loose myelin with fewer lamellae. The amounts of both basic protein and lipophilin (proteolipid protein) were reduced in the denser fractions. In contrast, the high-molecular-weight components were elevated in the dense fractions. The lipid composition was similar in all the fractions studied. Analysis of basic protein by gel electrophoresis at pH 10.6 revealed differences in basic protein microheterogeneity among the fractions. The light myelin fraction was enriched in the more positively charged basic protein components (components 1, 2, and 3), whereas these components were reduced in the denser fractions. Myelin in the dense fractions was enriched in the more modified forms of basic protein (components 6, 7, and 8). The pattern of microheterogeneity was different for basic protein isolated from myelins of a 2-year-old and an adult brain; the former showed fewer components and mainly the most cationic species. On the other hand, the pattern of microheterogeneity of basic protein isolated from the different density gradient fractions was similar for both ages.  相似文献   

4.
Plasma membrane proteolipid (plasmolipin), which was originally isolated from kidney membranes, has also been shown to be present in brain. In this study, we examined the distribution of plasmolipin in brain regions, myelin, and oligodendroglial membranes. Immunoblot analysis of different brain regions revealed that plasmolipin levels were higher in regions rich in white matter. Plasmolipin was also detected in myelin, myelin subfractions, and oligodendroglial membranes. Immunocytochemical analysis of the cerebellum revealed that plasmolipin was localized in the myelinated tracts. Plasmolipin levels in myelin were enriched during five successive cycles of myelin purification, similar to the enrichment of myelin proteolipid apoprotein (PLP) and myelin basic protein (MBP). In contrast, levels of Na+,K(+)-ATPase and a 70-kDa protein were decreased. When myelin or white matter was extracted with chloroform/methanol, it contained, in addition to PLP, a significant amount of plasmolipin. Quantitative immunoblot analysis suggested that plasmolipin constitutes in the range of 2.2-4.8% of total myelin protein. Plasmolipin, purified from kidney membranes, was detected by silver stain on gels at 18 kDa and did not show immunological cross-reactivity with either PLP or MBP. Thus, it is concluded that plasmolipin is present in myelin, possibly as a component of the oligodendroglial plasma membrane, but is structurally and immunologically different from the previously characterized myelin proteolipids.  相似文献   

5.
The composition of the myelin proteins of the central nervous system   总被引:7,自引:2,他引:5  
Abstract— The amino acid composition of human, monkey and bovine centrum ovale myelin, of bovine optic nerve myelin, and of bovine spinal cord white matter myelin has been determined. In general, the amino acid patterns of the centrum ovale myelin of these species and the optic nerve myelin are identical. Differences are noted when these are compared to the spinal cord white matter myelin. It is shown that the amino acid composition of myelin cannot be duplicated by any combination of the Folch–Lees proteolipid protein and the basic protein fraction of myelin. It is necessary to postulate the existence of a third protein fraction that is rich in dicarboxylic amino acids.  相似文献   

6.
The wide-spread use of and demand for myelin basic protein for immunologic studies has prompted us to re-examine the details of its isolation from CNS tissue of various species. The procedure described in this communication for the isolation and purification of myelin basic protein does not require column chromatography and is therefore suitable for large scale preparation of a reasonably pure product with simple laboratory equipment. If certain precautions are taken, the yield and quality of the product are reproducible. Certain contaminants which may accompany myelin basic protein during purification by procedures currently in use are pointed out, and their possible influence on the immunologic behavior of myelin basic protein is discussed. Suitable electrophoretic techniques for the detection of these contaminants as well as details for their removal from the myelin basic protein are described.  相似文献   

7.
Relative to the gray matter, there is a paucity of information regarding white matter biochemical alterations and their contribution to Alzheimer's disease (AD). Biochemical analyses of AD white matter combining size-exclusion, normal phase, and gas chromatography, immunoassays, and Western blotting revealed increased quantities of Abeta40 and Abeta42 in AD white matter accompanied by significant decreases in the amounts of myelin basic protein, myelin proteolipid protein, and 2',3'-cyclic nucleotide 3'-phosphodiesterase. In addition, the AD white matter cholesterol levels were significantly decreased while total fatty acid content was increased. In some instances, these white matter biochemical alterations were correlated with patient apolipoprotein E genotype, Braak stage, and gender. Our observations suggest that extensive white matter axonal demyelination underlies Alzheimer's pathology, resulting in loss of capacitance and serious disturbances in nerve conduction, severely damaging brain function. These white matter alterations undoubtedly contribute to AD pathogenesis and may represent the combined effects of neuronal degeneration, microgliosis, oligodendrocyte injury, microcirculatory disease, and interstitial fluid stasis. To accurately assess the success of future therapeutic interventions, it is necessary to have a complete appreciation of the full scope and extent of AD pathology.  相似文献   

8.
Isolated myelin of bovine spinal cord was found to degrade exogenous myelin basic protein (MBP) at pH 4.4. Electrophoretic peptide patterns were consistent with limited proteolysis of MBP. Some of the proteolytic activity was soluble at increased ionic strength, some remained bound, withstanding extraction at 37°C for up to 12 hr. While being measurable with exogenous MBP, bound protease degraded neither bound MBP nor any other major intrinsic myelin protein. Both soluble and bound protease activity was completely inhibited by pepstatin A. The patterns of limited proteolysis of MBP they produced were identical. Myelin of cerebral white matter also exhibited soluble and bound acid protease activity which was likewise inhibited by pepstatin A. Protease activity of spinal cord and cerebral myelin is therefore suggested to be due to a cathepsin D-like endopeptidase, present in a loosely and tightly bound form. Both forms increased by 50 to 80% in activity when myelin was isolated from mixtures of white and cortical gray matter. While increased soluble activity of myelin is consistent with binding of cathepsin D of lysosomal origin during the isolation of myelin the tightly bound form might point to a principal mechanism through which exogenous proteins may become attached to the myelin sheath in vivo.  相似文献   

9.
MYELIN PROTEINS FROM DIFFERENT REGIONS OF THE CENTRAL NERVOUS SYSTEM   总被引:10,自引:6,他引:4  
—The protein composition of myelin prepared from specific anatomical regions of the bovine brain and spinal cord was studied by a modification of the method of Gonzalez -Sastre (1970). Spinal cord myelin contained lesser amounts of chloroform-methanol soluble protein and proteolipid protein and had a lower activity of the enzyme 2′,3′-cyclic nucleotide 3′-phosphohydrolase than did myelin from subcortical white matter. There was no difference, however, in the protein composition of myelin from the various levels of the spinal cord. The amino acid composition of both proteolipid and basic protein showed no significant regional differences. Myelin preparations from both brain and spinal cord contained DM-20 protein.  相似文献   

10.
P Schulz  T F Cruz  M A Moscarello 《Biochemistry》1988,27(20):7793-7799
Fractions containing myelin of varying degrees of compaction were prepared from human white matter. Protein kinase activity in these fractions was measured by using both endogenous and exogenous myelin basic protein (MBP) as substrates. In both cases, less compact myelin fractions possessed higher levels of protein kinase activity than the compact myelin fraction. In addition, the specific activity of phosphorylated basic protein was greater in the loosely compacted fractions than in compact multilamellar myelin. When basic protein in compact myelin or the myelin fractions was phosphorylated by the endogenous kinase, approximately 70% of the [32P]phosphate was incorporated at a single site, identified as Ser-102. The remaining 30% was found in three other minor sites. Electron microscopy of less compact myelin showed it was composed of fewer lamellae which correlated with a relative decrease in the proportion of cationic charge isomers (microheteromers) when MBP was subjected to gel electrophoresis at alkaline pH. The shift in charge microheterogeneity of basic protein to the less cationic isomers in the less compact myelin fractions correlated with an increase in protein kinase activity and a greater specific activity of phosphorylated basic protein.  相似文献   

11.
Myelin Proteomics: Molecular Anatomy of an Insulating Sheath   总被引:1,自引:0,他引:1  
Fast-transmitting vertebrate axons are electrically insulated with multiple layers of nonconductive plasma membrane of glial cell origin, termed myelin. The myelin membrane is dominated by lipids, and its protein composition has historically been viewed to be of very low complexity. In this review, we discuss an updated reference compendium of 342 proteins associated with central nervous system myelin that represents a valuable resource for analyzing myelin biogenesis and white matter homeostasis. Cataloging the myelin proteome has been made possible by technical advances in the separation and mass spectrometric detection of proteins, also referred to as proteomics. This led to the identification of a large number of novel myelin-associated proteins, many of which represent low abundant components involved in catalytic activities, the cytoskeleton, vesicular trafficking, or cell adhesion. By mass spectrometry-based quantification, proteolipid protein and myelin basic protein constitute 17% and 8% of total myelin protein, respectively, suggesting that their abundance was previously overestimated. As the biochemical profile of myelin-associated proteins is highly reproducible, differential proteome analyses can be applied to material isolated from patients or animal models of myelin-related diseases such as multiple sclerosis and leukodystrophies.  相似文献   

12.
We describe the immunohistochemical localization of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) in CNS of the jimpy mutant mouse which is characterized by dys- and demyelination. In controls, the CNPase and MBP were localized exclusively in white matter in the CNS. The jimpy mutant mice were severely affected: A very weak reaction was observed in the white matter. Very few CNPase- and MBP-positive myelin sheaths were observed, and some degradation products were also observed after reaction with antisera against both CNPase and MBP. The immunohistochemical reaction in the jimpy mice showed a similar localization in both CNPase and MBP.  相似文献   

13.
The lipid composition of the brain, including myelin, was studied in detail in two cases with a variant form of metachromatic leukodystrophy (multiple sulphatase deficiency type). In the white matter, the sulphatide concentration was 3-4 times higher than the normal level in both cases. There was a significant accumulation of cholesterol sulphate in the brain, liver and kidney of both cases. The ganglioside pattern in the grey and white matter was abnormal, with a higher proportion of GM3, GM2 and GD3-gangliosides. Non-lipid hexosamine contents were increased 1.5-2 times in brain, 8-10 times in liver and 2-3 times in kidney. Increased amounts of glucocerobroside, ceramide lactoside and ceramide trihexoside were present in grey and white matter of both cases. Recovery of purified myelin from two patients' brains was much less than from control (1-2% in case 1 and 20-30% in case 2). The lipid composition of myelin was almost normal except for a higher proportion of sulphatide, with a decreased amount of cerebroside. The fatty acid compositions of myelin sulphatide and sphingomyelin were almost normal, while non-hydroxy fatty acids of cerebroside contained less long-chain fatty acids, as characterized by a significant increase of C16:0 and C18:0 fatty acids. The myelin polypeptide pattern by SDS-disc gel electrophoresis showed a relative decrease of basic protein and of proteolipid protein. A possible mechanism of myelin loss in MSD is discussed.  相似文献   

14.
Myelin was isolated from bovine brain by several published procedures and modifications of these procedures. High activity of the myelin marker (2,3-cyclic nucleotide 3-phosphohydrolase) and low activity of contaminants markers in white matter homogenates in respect to cerebral cortex showed the white matter to be better than the cerebral cortex or the whole brain for myelin isolation. A procedure is described for the preparation of purified myelin from bovine white matter which yielded a content of protein (40%), myelin marker (51%), and 5-nucleotidase (25%) in purified myelin higher than by any used method. Acetylcholinesterase or succinate dehydrogenase was lower than 7% of its activity in the white matter homogenate, and monoamine oxidase and NADPH: cytochrome c reductase were not recovered in myelin fraction. Morphologically, myelin fraction was shown to mainly consist of multilamellar membranes of different sizes. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of myelin fraction showed a characteristic protein pattern of myelin. When our procedure was applied to frozen white matter, lower protein (32%) and myelin marker (34%) and similar 5-nucleotidase activity (24%) were recovered in myelin, increasing its recovery in denser fractions of white matter.  相似文献   

15.
Lack of neurite growth in optic nerve explants in vitro has been suggested to be due to nonpermissive substrate properties of higher vertebrate central nervous system (CNS) white matter. We have searched for surface components in CNS white matter, which would prevent neurite growth. CNS, but not peripheral nervous system (PNS) myelin fractions from rat and chick were highly nonpermissive substrates in vitro. We have used an in vitro spreading assay with 3T3 cells to quantify substrate qualities of membrane fractions and of isolated membrane proteins reconstituted in artificial lipid vesicles. CNS myelin nonpermissiveness was abolished by treatment with proteases and was not associated with myelin lipid. Nonpermissive proteins were found to be membrane bound and yielded highly nonpermissive substrates upon reconstitution into liposomes. Size fractionation of myelin protein by SDS-PAGE revealed two highly nonpermissive minor protein fractions of Mr 35 and 250-kD. Removal of 35- and of 250-kD protein fractions yielded a CNS myelin protein fraction with permissive substrate properties. Supplementation of permissive membrane protein fractions (PNS, liver) with low amounts of 35- or of 250-kD CNS myelin protein was sufficient to generate highly nonpermissive substrates. Inhibitory 35- and 250-kD proteins were found to be enriched in CNS white matter and were found in optic nerve cell cultures which contained highly nonpermissive, differentiated oligodendrocytes. The data presented demonstrate the existence of membrane proteins with potent nonpermissive substrate properties. Distribution and properties suggest that these proteins might play a crucial inhibitory role during development and regeneration in CNS white matter.  相似文献   

16.
The incorporation of tritium from NaB3H4 into the major protein components of myelin and the presence of weak fluorescence emission bands at wavelengths of approximately 440 and 500 nm from sodium dodecyl sulfate-solubilized, delipidated white matter are indicative of the presence of the products of aldehyde reactions with proteins. The incorporation of tritium from NaB3H4 into myelin proteins was confirmed by reaction with purified components of myelin basic protein or with lipophilin, a purified fraction of proteolipid protein. From the extent of tritium incorporation into the purified proteins, it is estimated that approximately 0.2 mol of tritium is incorporated/mol of myelin basic protein and approximately 0.4 mol of tritium/mol of proteolipid protein. There is approximately 50% greater incorporation of tritium into a more degraded, less positively charged form of the basic protein. The incorporation of tritium into normal and multiple sclerosis white matter was compared. There is a small but statistically significant difference in the percentage of the total counts incorporated into the major protein fractions for the two groups, with the multiple sclerosis samples showing a higher percentage of the counts in the Wolfgram protein and a lower percentage in the myelin basic protein compared with the normal samples.  相似文献   

17.
White Matter Proteins in Multiple Sclerosis   总被引:6,自引:5,他引:1  
Abstract: The SDS-soluble membrane proteins of plaques and of macroscopically normal white matter from multiple sclerosis brain were investigated by gradient polyacrylamide gel electrophoresis (PAGE). Eleven protein bands were analyzed in detail. The extensive loss of myelin proteins in plaque samples was accompanied by changes in at least three other non-myelin proteins, besides glial fibrillary acidic protein (GFAP), which probably reflect gliosis. Densitometric analysis of the PAGE patterns of membrane fractions from MS and control white matter revealed significant quantitative differences in a number of protein bands. A reduction in myelin basic protein (BP) was associated with an equally significant increase in a high-molecular-weight peptide fragment which may prove to be a breakdown product of BP. Small but highly significant differences in the Wolfgram protein and in one non-myelin protein were also a consistent feature of the normal-appearing white matter samples. The problem of defining normal white matter in multiple sclerosis brain is discussed in relation to the results of the present study, which suggest that one of the early events in the pathogenesis of the disease prior to frank demyelination is an alteration in the protein components of the myelin sheath and possibly of glial cells.  相似文献   

18.
D-aspartic acid in purified myelin and myelin basic protein   总被引:4,自引:0,他引:4  
The presence of the biologically uncommon D-isomer of aspartic acid in the white matter of human brains has been reported previously from this laboratory (1). We now report that the level of D-aspartate in human brains is higher in purified myelin than in white matter and is even higher in the myelin basic protein fraction. There also appears to be a difference in the level of D-aspartate found in human brain as compared to bovine brain, possibly a species or age-related difference.  相似文献   

19.
Abstract: Incubation of highly purified human myelin at 25° and pH 8 in ammonium bicarbonate buffer resulted in the conversion of the myelin-associated glycoprotein (MAG) to a smaller derivative (dMAG) with an apparent molecular weight about 10,000 less. dMAG was stable and was not degraded to lower-molecular-weight breakdown products. Incubation of myelin under these conditions also resulted in the degradation of basic protein, but at a much slower rate. Half of the MAG was converted to dMAG in about 30 min, whereas degradation of half of the basic protein required 18 h of incubation. There was no significant loss of proteolipid, the Wolfgram doublet, or other myelin proteins during incubation for up to 18 h under these conditions. The formation of dMAG and the degradation of basic protein appear to be mediated by similar enzymatic activities; both processes exhibited broad pH optima in the neutral range, were prevented by briefly heating the myelin to 70° before incubation, and were stimulated by ammonium bicarbonate and other salts. Incubation of purified rat myelin also resulted in the formation of dMAG and the degradation of basic protein, but the conversion to dMAG occurred much more slowly than in human myelin preparations. In the rat, the percentage decreases in intact MAG and in basic protein were similar to each other and proceeded at rates comparable to the loss of basic protein in human myelin. These studies confirm and extend earlier demonstrations of neutral protease activity in purified myelin, and show that cleavage of MAG is one of the effects of this activity. The proteolytic activity affecting MAG and basic protein was not significantly reduced by further purification of the myelin on sucrose or CsCl gradients, suggesting that the neutral protease may be a myelin-related enzyme. The very high susceptibility of human MAG to this enzyme indicates that the effect of neutral protease on this glycoprotein should be considered in connection with demyelinating diseases.  相似文献   

20.
The peroxidase-antiperoxidase technique was used for immunocytochemical localization of carbonic anhydrase in the mouse spinal cord to detect whether this antigen was normally present in myelinated fibers, in oligodendrocytes in both white and gray matter, and in astrocytes, and to determine where the carbonic anhydrase might be localized in the spinal cords of dysmyelinating mutant (shiverer) mice. The most favorable methods for treating tissue were: 1) immersion in formalin-ethanol-acetic acid followed by paraffin embedding, or 2) light fixation with paraformaldehyde and preparation of vibratome sections. Carnoy's solution, followed by paraffin embedding, extracted myelin from the tissue, while aqueous aldehydes, when used before paraffin embedding, reduced staining everywhere except at sites of compact myelin. The latter conclusion was based, in part, on the almost complete loss of this antigen from the shiverer cord, where compact myelin is known to be virtually absent but where membrane-bound carbonic anhydrase was demonstrated enzymatically. When the optimal methods were used with normal mouse cords, carbonic anhydrase was found throughout the white matter columns and in the oligodendrocytes in gray and white matter. The staining of the white matter was attributed to myelinated fibers because of the similarity in distribution to both a histological myelin stain and the immunocytochemical staining for myelin basic protein. In the mutant mice the oligodendrocyte cell bodies and processes, which were stained in all areas of the spinal cord, were particularly numerous at the periphery of the sections. In contrast to the oligodendrocytes, the fibrous astrocytes appeared to lack carbonic anhydrase, or to have lower than detectable levels, since the astrocyte marker, glial fibrillary acidic protein, had a very different distribution from that of carbonic anhydrase. Even finer localization was obtained in vibratome sections, where the antibody against carbonic anhydrase permitted visualization of the processes connecting oligodendrocytes to myelinated fibers in the normal adult spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号