首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
ABC transporters are a large and important family of membrane proteins involved in substrate transport across the membrane. The transported substrates are quite diverse, ranging from monatomic ions to large biomolecules. Consequently, some ABC transporters are involved in biomedically relevant situations, from genetic diseases to multidrug resistance. The most conserved domains in ABC transporters are the nucleotide binding domains (NBDs), which form a dimer responsible for the binding and hydrolysis of ATP, concomitantly with substrate translocation. To elucidate how ATP hydrolysis structurally affects the NBD dimer, and consequently the transporter, we performed a molecular dynamics study on the NBD dimer of the HlyB ABC exporter. We have observed a change in the contact surface between the monomers after hydrolysis, even though we have not seen dimer opening in any of the five 100 ns simulations. We have also identified specific regions that respond to ATP hydrolysis, in particular the X-loop motif of ABC exporters, which has been shown to be in contact with the coupling helices of the transmembrane domains (TMDs). We propose that this motif is an important part of the NBD-TMD communication in ABC exporters. Through nonequilibrium analysis, we have also identified gradual conformational changes within a short time scale after ATP hydrolysis.  相似文献   

2.
The ATP binding cassette (ABC) family of transporters moves small molecules (lipids, sugars, peptides, drugs, nutrients) across membranes in nearly all organisms. Transport activity requires conformational switching between inward-facing and outward-facing states driven by ATP-dependent dimerization of two nucleotide binding domains (NBDs). The mechanism that connects ATP binding and hydrolysis in the NBDs to conformational changes in a substrate binding site in the transmembrane domains (TMDs) is currently an outstanding question. Here we use sequence coevolution analyses together with biochemical characterization to investigate the role of a highly conserved region in intracellular loop 1 we define as the GRD motif in coordinating domain rearrangements in the heterodimeric peptide exporter from Thermus thermophilus, TmrAB. Mutations in the GRD motif alter ATPase activity as well as transport. Disulfide crosslinking, evolutionary trace, and evolutionary coupling analysis reveal that these effects are likely due to the destabilization of a network in which the GRD motif in TmrA bridges residues of the Q-loop, X-loop, and ABC motif in the NBDs to residues in the TmrAB peptide substrate binding site, thus providing an avenue for conformational coupling. We further find that disruption of this network in TmrA versus TmrB has different functional consequences, hinting at an intrinsic asymmetry in heterodimeric ABC transporters extending beyond that of the NBDs. These results support a mechanism in which the GRD motifs help coordinate a transition to an outward open conformation, and each half of the transporter likely plays a different role in the conformational cycle of TmrAB.  相似文献   

3.
ABC (ATP-binding cassette) transporters are primary active membrane proteins that translocate solutes (allocrites) across lipid bilayers. The prototypical ABC transporter consists of four domains: two cytoplasmic NBDs (nucleotide-binding domains) and two TMDs (transmembrane domains). The NBDs, whose primary sequence is highly conserved throughout the superfamily, bind and hydrolyse ATP to power the transport cycle. The TMDs, whose primary sequence and protein fold can be quite disparate, form the translocation pathway across the membrane and generally (but not always) determine allocrite specificity. Structure determination of ABC proteins initially took advantage of the relative ease of expression and crystallization of the hydrophilic bacterial NBDs in isolation from the transporter complex, and revealed detailed information on the structural fold of these domains, the amino acids involved in the binding and hydrolysis of nucleotide, and the head-to-tail arrangement of the NBD-NBD dimer interface. More recently, several intact transporters have been crystallized and three types have, so far, been characterized: type I and II ABC importers, and ABC exporters. All three are present in prokaryotes, but only the ABC exporters appear to be present in eukaryotes. Their structural determination has provided insight into the mechanisms of energy and signal transduction between the NBDs and TMDs (i.e. between the ATP- and allocrite-binding sites) and, for some, the nature of the allocrite-binding site(s) within the TMDs. In this chapter, we focus primarily on the ABC exporters and describe the structural, biochemical and biophysical evidence for and against the controversial bellows-like mechanism proposed for allocrite efflux.  相似文献   

4.
ATP-binding cassette (ABC) transporters are integral membrane proteins that utilised energy from ATP hydrolysis to translocate substrates across the membrane. In addition to the common nucleotide-binding domains (NBDs) and transmembrane domains (TMDs), the methionine ABC transporter has C-terminal regulatory domains (C2 domains) that belong to ACT protein family. When the amount of methionine in the cell is high, the transport stops. This phenomenon is called trans-inhibition. To understand how a trans-inhibited protein returns to an uninhibited, resting state, we performed steered molecular dynamic simulations with and without the substrates. From the simulations, we observed some important conformational changes in the whole ABC transporter, including the constriction in the translocation pathway in the TMDs and approach of the NBDs. However, the C2 domains behaved differently in two types of the simulations. These findings might help to explain the relationship of the conformational changes of the C2 domains with the rearrangements of the NBDs or TMDs, and provide a way to understand the trans-inhibition from an opposite direction.  相似文献   

5.
6.
The Escherichia coli maltose transporter MalFGK2‐E belongs to the protein superfamily of ATP‐binding cassette (ABC) transporters. This protein is composed of heterodimeric transmembrane domains (TMDs) MalF and MalG, and the homodimeric nucleotide‐binding domains (NBDs) MalK2. In addition to the TMDs and NBDs, the periplasmic maltose binding protein MalE captures maltose and shuttle it to the transporter. In this study, we performed all‐atom molecular dynamics (MD) simulations on the maltose transporter and found that both the binding of MalE to the periplasmic side of the TMDs and binding of ATP to the MalK2 are necessary to facilitate the conformational change from the inward‐facing state to the occluded state, in which MalK2 is completely dimerized. MalE binding suppressed the fluctuation of the TMDs and MalF periplasmic region (MalF‐P2), and thus prevented the incorrect arrangement of the MalF C‐terminal (TM8) helix. Without MalE binding, the MalF TM8 helix showed a tendency to intrude into the substrate translocation pathway, hindering the closure of the MalK2. This observation is consistent with previous mutagenesis experimental results on MalF and provides a new point of view regarding the understanding of the substrate translocation mechanism of the maltose transporter.  相似文献   

7.
8.
We present an overview of the architecture of ATP-binding cassette (ABC) transporters and dissect the systems in core and accessory domains. The ABC transporter core is formed by the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) that constitute the actual translocator. The accessory domains include the substrate-binding proteins, that function as high affinity receptors in ABC type uptake systems, and regulatory or catalytic domains that can be fused to either the TMDs or NBDs. The regulatory domains add unique functions to the transporters allowing the systems to act as channel conductance regulators, osmosensors/regulators, and assemble into macromolecular complexes with specific properties.  相似文献   

9.
The ATP switch model for ABC transporters   总被引:1,自引:0,他引:1  
ABC transporters mediate active translocation of a diverse range of molecules across all cell membranes. They comprise two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recent biochemical, structural and genetic studies have led to the ATP-switch model in which ATP binding and ATP hydrolysis, respectively, induce formation and dissociation of an NBD dimer. This provides an exquisitely regulated switch that induces conformational changes in the TMDs to mediate membrane transport.  相似文献   

10.
ABC transporters play important roles in all types of organisms by participating in physiological and pathological processes. In order to modulate the function of ABC transporters, detailed knowledge regarding their structure and dynamics is necessary. Available structures of ABC proteins indicate three major conformations, a nucleotide-bound "bottom-closed" state with the two nucleotide binding domains (NBDs) tightly closed, and two nucleotide-free conformations, the "bottom-closed" and the "bottom-open", which differ in the extent of separation of the NBDs. However, it remains a question how the widely open conformation should be interpreted, and whether hydrolysis at one of the sites can drive conformational transitions while the NBDs remain in contact. To extend our knowledge, we have investigated the dynamic properties of the Sav1866 transporter using molecular dynamics (MD) simulations. We demonstrate that the replacement of one ATP by ADP alters the correlated motion patterns of the NBDs and the transmembrane domains (TMD). The results suggest that the hydrolysis of a single nucleotide could lead to extracellular closure, driving the transport cycle. Essential dynamics analysis of simulations suggests that single nucleotide hydrolysis can drive the system toward a "bottom-closed" apo conformation similar to that observed in the structure of the MsbA transporter. We also found significant structural instability of the "bottom-open" form of the transporters in simulations. Our results suggest that ATP hydrolysis at one of the sites promotes transport related conformational changes leading to the "bottom-closed" apo conformation, which could thus be physiologically more relevant for describing the structure of the apo state.  相似文献   

11.
ATP-binding cassette (ABC) transporters serve as importers and exporters for a wide variety of solutes in both prokaryotes and eukaryotes, and are implicated in microbial drug resistance and a number of significant human genetic disorders. Initial crystal structures of the soluble nucleotide binding domains (NBDs) of ABC transporters, while a significant step towards understanding the coupling of ATP binding and hydrolysis to transport, presented researchers with important questions surrounding the role of the signature sequence residues, the composition of the nucleotide binding sites, and the mode of NBD dimerization during the transport reaction cycle. Recent studies have begun to address these concerns. This mini-review summarizes the biochemical and structural characterizations of two archaebacterial NBDs from Methanocaldococcus jannaschii, MJ0796 and MJ1267, and offers current perspectives on the functional mechanism of ABC transporters.  相似文献   

12.
ABC transporters form the largest of all transporter families, and their structural study has made tremendous progress over recent years. However, despite such advances, the precise mechanisms that determine the energy-coupling between ATP hydrolysis and the conformational changes following substrate binding remain to be elucidated. Here, we present our thermodynamic analysis for both ABC importers and exporters, and introduce the two new concepts of differential-binding energy and elastic conformational energy into the discussion.We hope that the structural analysis of ABC transporters will henceforth take thermodynamic aspects of transport mechanisms into account as well.  相似文献   

13.
节肢动物ABC转运蛋白及其介导的杀虫剂抗性   总被引:1,自引:0,他引:1  
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter),简称ABC转运蛋白(ABC transporter),是继细胞色素P450单加氧酶、羧酸酯酶、谷胱甘肽S-转移酶之后又一类参与解毒作用的重要蛋白家族,因其在杀虫剂解毒等方面起着非常重要的作用,近年来逐渐受到广泛关注。ABC转运蛋白是一大类跨膜蛋白,其核心结构通常由4个结构域组成,包括2个高度疏水的跨膜结构域(transmembrane domains , TMD)和2个核苷酸结合域(nucleotide binding domains, NBD)。根据序列相似性和保守结构域,可以把ABC转运蛋白家族分为8个亚家族,每个亚家族的成员数及功能不同。这类蛋白在各种生物体内均有分布,其主要功能包括转运物质、信号传导、细胞表面受体及参与细胞内DNA修复,转录及调节基因的表达过程等。此外,近年来的研究表明,ABC转运蛋白的突变或过表达不仅与节肢动物对化学农药的抗药性密切相关,而且在抗Bt毒素方面也起着非常重要的作用,对转Bt作物造成严重威胁。本文综述了节肢动物ABC转运蛋白的结构,ATP水解介导的作用机制,亚家族的分类、结构及生理功能,以及由ABC转运蛋白介导的抗药性研究进展,旨在深入了解ABC转运蛋白的研究现状及其在节肢动物抗药性方面的作用,为阐明节肢动物抗药性机制提供新的理论依据,对改进农业害虫的抗性监测和治理策略也具有一定的指导意义。  相似文献   

14.
Oliveira AS  Baptista AM  Soares CM 《Proteins》2011,79(6):1977-1990
ATP-Binding Cassette (ABC) transporters are ubiquitous membrane proteins that use energy from ATP binding or/and hydrolysis to actively transport allocrites across membranes. In this study, we identify ATP-hydrolysis induced conformational changes in a complete ABC exporter (Sav1866) from Staphylococcus aureaus, using molecular dynamics (MD) simulations. By performing MD simulations on the ATP and ADP+IP bound states, we identify the conformational consequences of hydrolysis, showing that the major rearrangements are not restricted to the NBDs, but extend to the transmembrane domains (TMDs) external regions. For the first time, to our knowledge, we see, within the context of a complete transporter, NBD dimer opening in the ADP+IP state in contrast with all ATP-bound states. This opening results from the dissociation of the ABC signature motif from the nucleotide. In addition, in both states, we observe the opening of a gate entrance in the intracellular loop region leading to the exposure of the TMDs internal cavity to the cytoplasm. To see if this opening was large enough to allow allocrite transport, the adiabatic energy profile for doxorubicin passage was determined. For both states, this profile, although an approximation, is overall downhill from the cytoplasmatic to the extracellular side, and the local energy barriers along the TMDs are relatively small, evidencing the exporter nature of Sav1866. The major difference between states is an energy barrier located in the cytoplasmic gate region, which becomes reduced upon hydrolysis, suggesting that allocrite passage is facilitated, and evidencing a possible molecular mechanism for the active transport in these proteins.  相似文献   

15.
ABC transporters harness the energy from ATP binding and hydrolysis to translocate substrates across the membrane. Binding of two ATP molecules at the nucleotide binding domains (NBDs) leads to the formation of an outward-facing state. The conformational changes required to reset the transporter to the inward-facing state are initiated by sequential hydrolysis of the bound nucleotides. In a homodimeric ABC exporter such as MsbA responsible for lipid A transport in Escherichia coli, sequential ATP hydrolysis implies the existence of an asymmetric conformation. Here we report the in vitro selection of a designed ankyrin repeat protein (DARPin) specifically binding to detergent-solubilized MsbA. Only one DARPin binds to the homodimeric transporter in the absence as well as in the presence of nucleotides, suggesting that it recognizes asymmetries in MsbA. DARPin binding increases the rate of ATP hydrolysis by a factor of two independent of the substrate-induced ATPase stimulation. Electron paramagnetic resonance (EPR) measurements are found to be in good agreement with the available crystal structures and reveal that DARPin binding does not affect the large nucleotide-driven conformational changes of MsbA. The binding epitope was mapped by cross-linking and EPR to the membrane-spanning part of the transmembrane domain (TMD). Using cross-linked DARPin-MsbA complexes, 8-azido-ATP was found to preferentially photolabel one chain of the homodimer, suggesting that the asymmetries captured by DARPin binding at the TMDs are propagated to the NBDs. This work demonstrates that in vitro selected binders are useful tools to study the mechanism of membrane proteins.  相似文献   

16.
The spread of multidrug resistance (MDR) is a world health crisis that presents a significant challenge to the treatment of cancer and infection. MDR can be caused by a group of ABC (MDR-ABC) transporters that move hydrophobic drug molecules and lipids across the cell membrane. To gain insight into the conformational changes these transporters undergo when flipping hydrophobic substrates across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from Vibrio cholera (VC-MsbA) to 3.8A. Structural comparison of VC-MsbA to MsbA from Escherichia coli reveals that the transporters share a structurally conserved core of transmembrane alpha-helices, but differ in the relative orientations of their nucleotide-binding domains (NBD). The transmembrane domain of VC-MsbA is captured in a closed conformation and the structure supports a "power stroke" model of transporter dynamics where opposing NBDs associate upon ATP binding. The separation of the alpha and beta domains of the NBD suggests the possibility that their association could make them competent to bind ATP and gives further insight into the structural basis for catalytic regulation.  相似文献   

17.
ATP-Binding Cassette transporters are ubiquitous membrane proteins that convert the energy from ATP-binding and hydrolysis into conformational changes of the transmembrane region to allow the translocation of substrates against their concentration gradient. Despite the large amount of structural and biochemical data available for this family, it is still not clear how the energy obtained from ATP hydrolysis in the ATPase domains is "transmitted" to the transmembrane domains. In this work, we focus our attention on the consequences of hydrolysis and inorganic phosphate exit in the maltose uptake system (MalFGK(2)E) from Escherichia coli. The prime goal is to identify and map the structural changes occurring during an ATP-hydrolytic cycle. For that, we use extensive molecular dynamics simulations to study three potential intermediate states (with 10 replicates each): an ATP-bound, an ADP plus inorganic phosphate-bound and an ADP-bound state. Our results show that the residues presenting major rearrangements are located in the A-loop, in the helical sub-domain, and in the "EAA motif" (especially in the "coupling helices" region). Additionally, in one of the simulations with ADP we were able to observe the opening of the NBD dimer accompanied by the dissociation of ADP from the ABC signature motif, but not from its corresponding P-loop motif. This work, together with several other MD studies, suggests a common communication mechanism both for importers and exporters, in which ATP-hydrolysis induces conformational changes in the helical sub-domain region, in turn transferred to the transmembrane domains via the "coupling helices".  相似文献   

18.
Secondary active transporters from several protein families share a core of two five-helix inverted repeats that has become known as the LeuT fold. The known high-resolution protein structures with this fold were analyzed by structural superposition of the core transmembrane domains (TMDs). Three angle parameters derived from the mean TMD axes correlate with accessibility of the central binding site from the outside or inside. Structural transitions between distinct conformations were analyzed for four proteins in terms of changes in relative TMD arrangement and in internal conformation of TMDs. Collectively moving groups of TMDs were found to be correlated in the covariance matrix of elastic network models. The main features of the structural transitions can be reproduced with the 5 % slowest normal modes of anisotropic elastic network models. These results support the rocking bundle model for the major conformational change between the outward- and inward-facing states of the protein and point to an important role for the independently moving last TMDs of each repeat in occluding access to the central binding site. Occlusion is also supported by flexing of some individual TMDs in the collectively moving bundle and hash motifs.  相似文献   

19.
A novel gene encoding a MDR-like ABC transporter protein was cloned from Catharanthus roseus, a medicinal plant with more than 120 kinds of secondary metabolites, through rapid amplification of cDNA ends (RACE). This gene (named as Crmdr1; GenBank accession no.: DQ660356) had a total length of 4395 bp with an open reading frame of 3801 bp, and encoded a predicted polypeptide of 1266 amino acids with a molecular weight of 137.1 kDa. The CrMDR1 protein shared 59.8, 62.5, 60.0 and 58.2% identity with other MDR proteins isolated from Arabidopsis thaliana (AAD31576), Coptis japonica (CjMDR), Gossypium hirsutum (GhMDR) and Triticum aestivum (TaMDR) at amino acid level, respectively. Southern blot analysis showed that Crmdr1 was a low-copy gene. Expression pattern analysis revealed that Crmdr1 constitutively expressed in the root, stem and leaf, but with lower expression in leaf. The domains analysis showed that CrMDR1 protein possessed two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) arranging in "TMD1-NBD1-TMD2-NBD2" direction, which is consistent with other MDR transporters. Within NBDs three characteristic motifs common to all ABC transporters, "Walker A", "Walker B" and C motif, were found. These results indicate that CrMDR1 is a MDR-like ABC transporter protein that may be involved in the transport and accumulation of secondary metabolites.  相似文献   

20.
ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that translocate substrates across cell membranes. The alternating access of their transmembrane domains to opposite sides of the membrane powered by the closure and reopening of the nucleotide binding domains is proposed to drive the translocation events. Despite clear structural similarities, evidence for considerable mechanistic diversity starts to accumulate within the importers subfamily. We present here a detailed study of the gating mechanism of a type II ABC importer, the BtuCD-F vitamin B(12) importer from Escherichia coli, elucidated by EPR spectroscopy. Distance changes at key positions in the translocation gates in the nucleotide-free, ATP- and ADP-bound conformations of the transporter were measured in detergent micelles and liposomes. The translocation gates of the BtuCD-F complex undergo conformational changes in line with a "two-state" alternating access model. We provide the first direct evidence that binding of ATP drives the gates to an inward-facing conformation, in contrast to type I importers specific for maltose, molybdate, or methionine. Following ATP hydrolysis, the translocation gates restore to an apo-like conformation. In the presence of ATP, an excess of vitamin B(12) promotes the reopening of the gates toward the periplasm and the dislodgment of BtuF from the transporter. The EPR data allow a productive translocation cycle of the vitamin B(12) transporter to be modeled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号