首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We present a method by which it is possible to describe the binding of fatty acids to phospholipid bilayers. Binding constants for oleic acid and a number of fatty acids used as spectroscopic probes are deduced from electrophoresis measurements. There is a large shift in pK value for the fatty acids on binding to the phospholipid bilayers, consistent with stronger binding of the uncharged form of the fatty acid. For dansylundecanoic acid, fluorescence titrations are consistent with the binding constants derived from the electrophoresis experiments. For 12-(9-anthroyloxy)stearic acid, fluorescence and electrophoresis data are inconsistent, and we attribute this to quenching of fluorescence at high molar ratios of 12-anthroylstearic acid to phospholipid in the bilayer.  相似文献   

3.
4.
A simple theory is developed that explains the formation of bilayers and vesicles and accounts quantitatively for many of their physical properties: Properties including vesicle size distributions and bilayer elasticity emerge from a unified theory that links thermodynamics, interaction free energy, and molelcular geometry. The theory may be applied to the analysis of more complicated membrane structures and mechanisms.  相似文献   

5.
Interaction of small peptides with lipid bilayers.   总被引:1,自引:1,他引:0       下载免费PDF全文
K V Damodaran  K M Merz  Jr    B P Gaber 《Biophysical journal》1995,69(4):1299-1308
Molecular dynamics simulations of the tripeptide Ala-Phe-Ala-O-tert-butyl interacting with dimyristoylphosphatidylcholine lipid bilayers have been carried out. The lipid and aqueous environments of the peptide, the alkyl chain order, and the lipid and peptide dynamics have been investigated with use of density profiles, radial distribution functions, alkyl chain order parameter profiles, and time correlation functions. It appears that the alkyl chain region accommodates the peptides in the bilayer with minimal perturbation to this region. The peptide dynamics in the bilayer bound form has been compared with that of the free peptide in water. The peptide structure does not vary on the simulation time scale (of the order of hundreds of picoseconds) compared with the solution structure in which a random structure is observed.  相似文献   

6.
Hsu JC  Yip CM 《Biophysical journal》2007,92(12):L100-L102
Identifying the mechanisms responsible for the interaction of peptides with cell membranes is critical to the design of new antimicrobial peptides and membrane transporters. We report here the results of a computational simulation of the interaction of the 13-residue peptide indolicidin with single-phase lipid bilayers of dioleoylphosphatidylcholine, distearoylphosphatidylcholine, dioleoylphosphatidylglycerol, and distearoylphosphatidylglycerol. Ensemble analysis of the membrane-bound peptide revealed that, in contrast to the extended, linear backbone structure reported for indolicidin in sodium dodecyl sulphate detergent micelles, the peptide adopts a boat-shaped conformation in both phosphatidylglycerol and phosphatidylcholine lipid bilayers, similar to that reported for dodecylphosphocholine micelles. In agreement with fluorescence and NMR experiments, simulations confirmed that the peptide localizes in the membrane interface, with the distance between phosphate headgroups of each leaflet being reduced in the presence of indolicidin. These data, along with a concomitant decrease in lipid order parameters for the upper-tail region, suggest that indolicidin binding results in membrane thinning, consistent with recent in situ atomic force microscopy studies.  相似文献   

7.
Synaptotagmin I is the major Ca2+ sensor for membrane fusion during neurotransmitter release. The cytoplasmic domain of synaptotagmin consists of two C2 domains, C2A and C2B. On binding Ca2+, the tips of the two C2 domains rapidly and synchronously penetrate lipid bilayers. We investigated the forces of interaction between synaptotagmin and lipid bilayers using single-molecule force spectroscopy. Glutathione-S-transferase-tagged proteins were attached to an atomic force microscope cantilever via a glutathione-derivatized polyethylene glycol linker. With wild-type C2AB, the force profile for a bilayer containing phosphatidylserine had both Ca2+-dependent and Ca2+-independent components. No force was detected when the bilayer lacked phosphatidylserine, even in the presence of Ca2+. The binding characteristics of C2A and C2B indicated that the two C2 domains cooperate in binding synaptotagmin to the bilayer, and that the relatively weak Ca2+-independent force depends only on C2A. When the lysine residues K189-192 and K326, 327 were mutated to alanine, the strong Ca2+-dependent binding interaction was either absent or greatly reduced. We conclude that synaptotagmin binds to the bilayer via C2A even in absence of Ca2+, and also that positively charged regions of both C2A and C2B are essential for the strong Ca2+-dependent binding of synaptotagmin to the bilayer.  相似文献   

8.
Golgi-Associated Plant Pathogenesis-Related protein 1 (GAPR-1) is a mammalian protein that belongs to the superfamily of plant pathogenesis related proteins group 1 (PR-1). GAPR-1 is a peripheral membrane-binding protein that strongly associates with lipid-enriched microdomains at the cytosolic leaflet of Golgi membranes. Little is known about the mechanism of GAPR-1 interaction with membranes. We previously suggested that dimerization plays a role in the function of GAPR-1 and here we report that phytic acid (inositol hexakisphosphate) induces dimerization of GAPR-1 in solution. Elucidation of the crystal structure of GAPR-1 in the presence of phytic acid revealed that the GAPR-1 dimer differs from the previously published GAPR-1 dimer structure. In this structure, one of the monomeric subunits of the crystallographic dimer is rotated by 28.5°. To study the GAPR-1 dimerization properties, we investigated the interaction with liposomes in a light scattering assay and by flow cytometry. In the presence of negatively charged lipids, GAPR-1 caused a rapid and stable tethering of liposomes. [D81K]GAPR-1, a mutant predicted to stabilize the IP6-induced dimer conformation, also caused tethering of liposomes. [A68K]GAPR-1 however, a mutant predicted to stabilize the non-rotated dimer conformation, is capable of binding to liposomes but did not cause liposome tethering. Our combined data suggest that the charge properties of the lipid bilayer can regulate GAPR-1 dynamics as a potential mechanism to modulate GAPR-1 function.  相似文献   

9.
The relationship between the molecular architecture of a series of poly(ethylene oxide)-b-poly(propylene oxide) (PEO-PPO) diblock copolymers and the nature of their interactions with lipid bilayers has been studied using small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC). The number of molecular repeat units in the hydrophobic PPO block has been found to be a critical determinant of the nature of diblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers whose PPO chain length approximates that of the acyl chains of the lipid bilayer yield highly ordered, expanded lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Shorter diblock copolymers produce mixed lamellar and nonlamellar mesophases. The thermotropic phase behavior of the polymer-doped membrane systems is highly influenced by the presence and molecular architecture of the diblock copolymer, as evidenced by shifting of the main phase transition to higher temperatures, broadening of the main transition, and the appearance of other features. Studies of temperature-induced changes in the mesophase structure for compositions prepared with well-integrated PEO-PPO polymers indicate that they undergo reversible changes to a nonlamellar structure as the temperature is lowered. Increasing either the number of repeat units in the PEO block or the polymer concentration promotes a greater degree of structural ordering.  相似文献   

10.
Ayton G  Voth GA 《Biophysical journal》2002,83(6):3357-3370
A lipid bilayer is modeled using a mesoscopic model designed to bridge atomistic bilayer simulations with macro-scale continuum-level simulation. Key material properties obtained from detailed atomistic-level simulations are used to parameterize the meso-scale model. The fundamental length and time scale of the meso-scale simulation are at least an order of magnitude beyond that used at the atomistic level. Dissipative particle dynamics cast in a new membrane formulation provides the simulation methodology. A meso-scale representation of a dimyristoylphosphatidylcholine membrane is examined in the high and low surface tension regimes. At high surface tensions, the calculated modulus is found to be slightly less than the atomistically determined value. This result agrees with the theoretical prediction that high-strain thermal undulations still persist, which have the effect of reducing the value of the atomistically determined modulus. Zero surface tension simulations indicate the presence of strong thermal undulatory modes, whereas the undulation spectrum and the calculated bending modulus are in excellent agreement with theoretical predictions and experiment.  相似文献   

11.
Molecular dynamics simulations of proteins in lipid bilayers   总被引:1,自引:0,他引:1  
With recent advances in X-ray crystallography of membrane proteins promising many new high-resolution structures, molecular dynamics simulations will become increasingly valuable for understanding membrane protein function, as they can reveal the dynamic behavior concealed in the static structures. Dramatic increases in computational power, in synergy with more efficient computational methodologies, now allow us to carry out molecular dynamics simulations of any structurally known membrane protein in its native environment, covering timescales of up to 0.1 micros. At the frontiers of membrane protein simulations are ion channels, aquaporins, passive and active transporters, and bioenergetic proteins.  相似文献   

12.
A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations.  相似文献   

13.
Surface areas and fluctuations evaluated from 50 ns molecular dynamics simulations of fully hydrated dipalmitoylphosphatidylcholine (DPPC) bilayers in a 1:2 trehalose:lipid ratio carried out at surface tensions 10, 17 and 25 dyn/cm/leaflet are compared with those of pure bilayers under the same conditions. Trehalose increases the surface area, as consistent with the surface tension lowering observed in simulations at constant area. The system bulk elastic modulus K b  = 1.5 ± 0.3 × 1010 dyn/cm2. It is independent of bilayer surface area and trehalose content within statistical error. In contrast, the area elastic modulus K a shows a strong area dependence. At 64 Å2/lipid (the experimental surface area), K a  = 138 ± 26 dyn/cm for a pure DPPC bilayer and 82 ± 10 dyn/cm for one with trehalose; i.e. trehalose increases fluidity of the bilayer surface at this area per lipid.  相似文献   

14.
The quartz-crystal microbalance (QCM) technique was applied to investigate the interaction of tea catechins with lipid bilayers. The association constants obtained from the frequency changes of QCM revealed that (-)epicatechin gallate and (-)epigallocatechin gallate interacted with 1,2-dimyristoyl-sn-glycero-3-phosphocholine ca. 1000 times more strongly than (-)epicatechin and (-)epigallocatechin. The results exhibited good correlation with the strength of biological activity.  相似文献   

15.
Interaction of glycosylated human myelin basic protein with lipid bilayers   总被引:1,自引:0,他引:1  
Myelin basic protein (MBP), isolated from normal human myelin, was glycosylated with UDP-N-acetyl-D-galactosamine and a glycosyltransferase isolated from porcine submaxillary glands. MBP containing 0.85 mol of N-acetyl-D-galactosamine per mole of protein was oxidized at carbon 6 by galactose oxidase and complexed with a spin-label, Tempoamine, in order to study its interactions with lipids. When the spin-labeled MBP was reacted with lipid vesicles consisting of DSPG, DPPG, and DMPG, most of the spin-label was motionally restricted in the gel phase, with a correlation time greater than 10(-8)s. The motion increased with increasing temperature and was sensitive to the lipid phase transition. Interaction with the gel phase of DPPA caused much less motional restriction of the probe. However, melting of the lipid allowed increased interaction and motional restriction of the probe, which was only partially reversed on cooling back to the gel phase. The motional restriction of the probe in these lipids is attributed to its penetration partway into the lipid bilayer in both the gel and liquid-crystalline phases. The fact that the probe bound to the protein can penetrate partway into the bilayer suggests that other hydrophobic side chains and residues of the protein can similarly penetrate into the bilayer. Additional evidence for penetration was provided by digestion of the lipid-bound protein with endoproteinase Lys-C. When nonglycosylated and glycosylated MBP in solution was treated with Lys-C, extensive digestion occurred. A single radioactive peptide which eluted at 25 min was identified as residues 92-105.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Interaction of tea catechins with lipid bilayers was investigated with liposome systems, which enabled us to separate liposomes from the external medium by centrifugation. We found that epicatechin gallate had the highest affinity for lipid bilayers, followed by epigallocatechin gallate, epicatechin, and epigallocatechin. Epicatechin gallate and epigallocatechin gallate in the surface of lipid bilayer perturbed the membrane structure.  相似文献   

17.
Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of approximately 38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be approximately 3 x 10(-11) N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores.  相似文献   

18.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by 31P and 1H magic-angle spinning (MAS) NMR spectroscopy. The 31P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

19.
Protegrins (PG) are important in defending host tissues, preventing infection via an attack on the membrane surface of invading microorganisms. Protegrins have powerful antibiotic abilities, but the molecular-level mechanisms underlying the interactions of their beta-sheet motifs with the membrane are not known. Protegrin-1 (PG-1) is composed of 18 amino acids with a high content of basic residues and two disulfide bonds. Here we focused on the stability of PG-1 at the amphipathic interface in lipid bilayers and on the details of the peptide-membrane interactions. We simulated all-atom models of the PG-1 monomer with explicit water and lipid bilayers composed of both homogeneous POPC (palmitoyl-oleyl-phosphatidylcholine) lipids and a mixture of POPC/POPG (palmitoyl-oleyl-phosphatidylglycerol) (4:1) lipids. We observed that local thinning of the lipid bilayers mediated by the peptide is enhanced in the lipid bilayer containing POPG, consistent with experimental results of selective membrane targeting. The beta-hairpin motif of PG-1 is conserved in both lipid settings, whereas it is highly bent in aqueous solution. The conformational dynamics of PG-1, especially the highly charged beta-hairpin turn region, are found to be mostly responsible for disturbing the membrane. Even though the eventual membrane disruption requires PG-1 oligomers, our simulations clearly show the first step of the monomeric effects. The thinning effects in the bilayer should relate to pore/channel formation in the lipid bilayer and thus be responsible for further defects in the membrane caused by oligomer.  相似文献   

20.
An efficient method for extracting volumetric data from simulations is developed. The method is illustrated using a recent atomic-level molecular dynamics simulation of L alpha phase 1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayer. Results from this simulation are obtained for the volumes of water (VW), lipid (V1), chain methylenes (V2), chain terminal methyls (V3), and lipid headgroups (VH), including separate volumes for carboxyl (Vcoo), glyceryl (Vgl), phosphoryl (VPO4), and choline (Vchol) groups. The method assumes only that each group has the same average volume regardless of its location in the bilayer, and this assumption is then tested with the current simulation. The volumes obtained agree well with the values VW and VL that have been obtained directly from experiment, as well as with the volumes VH, V2, and V3 that require certain assumptions in addition to the experimental data. This method should help to support and refine some assumptions that are necessary when interpreting experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号