首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescence cross-correlation spectroscopy (FCCS) is used to determine interactions and dissociation constants (Kds) of biomolecules. The determination of a Kd depends on the accurate measurement of the auto- and cross-correlation function (ACF and CCF) amplitudes. In the case of complete binding, the ratio of the CCF/ACF amplitudes is expected to be 1. However, measurements performed on tandem fluorescent proteins (FPs), in which two different FPs are linked, yield CCF/ACF amplitude ratios of ~0.5 or less for different FCCS schemes. We use single wavelength FCCS and pulsed interleaved excitation FCCS to measure various tandem FPs constituted of different red and green FPs and determine the causes for this suboptimal ratio. The main causes for the reduced CCF/ACF amplitude ratio are differences in observation volumes for the different labels, the existence of dark FPs due to maturation problems, photobleaching, and to a lesser extent Förster (or fluorescence) resonance energy transfer between the labels. We deduce the fraction of nonfluorescent proteins for EGFP, mRFP, and mCherry as well as the differences in observation volumes. We use this information to correct FCCS measurements of the interaction of Cdc42, a small Rho-GTPase, with its effector IQGAP1 in live cell measurements to obtain a label-independent value for the Kd.  相似文献   

2.
Decreasing photobleaching by silver island films: application to muscle   总被引:1,自引:0,他引:1  
Recently it has become possible to study interactions between proteins at the level of single molecules. This requires collecting data from an extremely small volume, small enough to contain one molecule-typically of the order of attoliters (10(-18) L). Collection of data from such a small volume with sufficiently high signal-to-noise ratio requires that the rate of photon detection per molecule be high. This calls for a large illuminating light flux, which in turn leads to rapid photobleaching of the fluorophores that are labeling the proteins. To decrease photobleaching, we measured fluorescence from a sample placed on coverslips coated with silver island films (SIF). SIF reduce photobleaching because they enhance fluorescence brightness and significantly decrease fluorescence lifetime. Increase in the brightness effectively decreases photobleaching because illumination can be attenuated to obtain the same fluorescence intensity. Decrease of lifetime decreases photobleaching because short lifetime minimizes the probability of oxygen attack while the fluorophore is in the excited state. The decrease of photobleaching was demonstrated in skeletal muscle. Myofibrils were labeled lightly with rhodamine-phalloidin, placed on coverslips coated with SIF, illuminated by total internal reflection, and observed through a confocal aperture. We show that SIF causes the intensity of phalloidin fluorescence to increase 4-5 fold and its fluorescence lifetime to decrease on average 23-fold. As a consequence, the rate of photobleaching of four or five molecules of actin of a myofibril on Olympus coverslips coated with SIF decreased at least 30-fold in comparison with photobleaching on an uncoated coverslip. Significant decrease of photobleaching makes the measurement of signal from a single cross-bridge of contracting muscle feasible.  相似文献   

3.
Many cnidarians display vivid fluorescence under proper lighting conditions. In general, these colors are due to the presence of fluorescent proteins similar to the green fluorescent protein (GFP) originally isolated from the hydrozoan medusa Aequorea victoria (Cnidaria: Hydrozoa). To optimize the search for new fluorescent proteins (FPs), a technique was developed that allows for the rapid cloning and screening of FP genes without the need for a prior knowledge of gene sequence. Using this method, four new FP genes were cloned, a green from Montastraea cavernosa (Anthozoa: Scleractinia: Faviidae), a cyan from Pocillopora damicornis (Anthozoa: Scleractinia: Pocilloporidae), a cyan from Discosoma striata (Anthozoa: Corallimorpharia), and a red from a second Discosoma species. Two additional green FPs were cloned, one from M. cavernosa and one from its congener Montastraea faveolata, from purified cDNA using PCR primers designed for the first M. cavernosa green FP. Each FP has recognizable amino acid sequence motifs that place them conclusively in the GFP protein family. Mutation of these products using a low-stringency PCR protocol followed by screening of large numbers of bacterial colonies allowed rapid creation of mutants with a variety of characteristics, including changes in color, maturation time, and brightness. An enhanced version of the new red FP, DspR1+, matures faster at 30 degrees C than the commercially available DsRed but matures slower than DsRed at 37 degrees C. One of the M. cavernosa green FPs, McaG2, is highly resistant to photobleaching and has a fluorescence quantum yield approximately twice that of EGFP-1.  相似文献   

4.
Kentsis A  Mezei M  Gindin T  Osman R 《Proteins》2004,55(3):493-501
Definition of the unfolded state of proteins is essential for understanding their stability and folding on biological timescales. Here, we find that under near physiological conditions the configurational ensemble of the unfolded state of the simplest protein structure, polyalanine alpha-helix, cannot be described by the commonly used Flory random coil model, in which configurational probabilities are derived from conformational preferences of individual residues. We utilize novel effectively ergodic sampling algorithms in the presence of explicit aqueous solvation, and observe water-mediated formation of polyproline II helical (P(II)) structure in the natively unfolded state of polyalanine, and its facilitation of alpha-helix formation in longer peptides. The segmented P(II) helical coil preorganizes the unfolded state ensemble for folding pathway entry by reducing the conformational space available to the diffusive search. Thus, as much as half of the folding search in polyalanine is accomplished by preorganization of the unfolded state.  相似文献   

5.
Due to the low absorbance in the far-red (FR) and near-infrared (NIR) “optical window”, NIR fluorescent proteins (FPs) are powerful tools for deep imaging. Here, we report three new, highly bright NIR FPs termed BDFP1.8, BDFP1.8:1.8 (tandem BDFP1.8) and BDFP1.9, which evolved from a previously reported FR FP, BDFP1.6: a derivative of ApcF2 from Chroococcidiopsis thermalis sp. PCC7203. ApcF2 binds phycocyanobilin (PCB) non-covalently, while BDFPs, the derivatives of ApcF2, can bind biliverdin (BV) covalently. We identified that dimeric BDFP1.8 and monomeric BDFP1.8:1.8 have a 2.4-and 4.4-fold higher effective brightness, respectively, than iRFP720, which has the highest effective brightness among the reported NIR FPs. Monomeric DBFP1.9 (17 kDa) has one of the smallest masses among highly bright FPs in the FR and NIR regions. Enhancing the affinity between the apo-proteins and the BV chromophore is an effective method to improve the effective brightness of biliprotein FPs. Moreover, BDFP1.8 and 1.9 exhibit higher stability to temperature, pH and light than iRFP720. Finally, the highly bright NIR BDFP1.8 together with FR BDFP1.6 could effectively biolabel cells in dual colors.  相似文献   

6.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   

7.
All organic fluorophores undergo irreversible photobleaching during prolonged illumination. Although fluorescent proteins typically bleach at a substantially slower rate than many small-molecule dyes, in many cases the lack of sufficient photostability remains an important limiting factor for experiments requiring large numbers of images of single cells. Screening methods focusing solely on brightness or wavelength are highly effective in optimizing both properties, but the absence of selective pressure for photostability in such screens leads to unpredictable photobleaching behavior in the resulting fluorescent proteins. Here we describe an assay for screening libraries of fluorescent proteins for enhanced photostability. With this assay, we developed highly photostable variants of mOrange (a wavelength-shifted monomeric derivative of DsRed from Discosoma sp.) and TagRFP (a monomeric derivative of eqFP578 from Entacmaea quadricolor) that maintain most of the beneficial qualities of the original proteins and perform as reliably as Aequorea victoria GFP derivatives in fusion constructs.  相似文献   

8.
《Biophysical journal》2022,121(23):4560-4568
The use of polyproline II (PPII) helices in protein design is currently hindered by limitations in our understanding of their conformational stability and folding. Recent studies of the snow flea antifreeze protein (sfAFP), a useful model system composed of six PPII helices, suggested that a low denatured state entropy contributes to folding thermodynamics. Here, circular dichroism spectroscopy revealed minor populations of PPII like conformers at low temperature. To get atomic level information on the conformational ensemble and entropy of the reduced, denatured state of sfAFP, we have analyzed its chemical shifts and {1H}-15N relaxation parameters by NMR spectroscopy at four experimental conditions. No significant populations of stable secondary structure were detected. The stiffening of certain N-terminal residues at neutral versus acidic pH and shifted pKa values leads us to suggest that favorable charge-charge interactions could bias the conformational ensemble to favor the formation the C1-C28 disulfide bond during nascent folding, although no evidence for preferred contacts between these positions was detected by paramagnetic relaxation enhancement under denaturing conditions. Despite a high content of flexible glycine residues, the mobility of the sfAFP denatured ensemble is similar for denatured α/β proteins both on fast ps/ns as well as slower μs/ms timescales. These results are in line with a conformational entropy in the denatured ensemble resembling that of typical proteins and suggest that new structures based on PPII helical bundles should be amenable to protein design.  相似文献   

9.
Fluorescent proteins (FPs) have proven to be valuable tools for high-resolution imaging studies of vesicle transport processes, including exo- and endocytosis. Since the pH of the vesicle lumen changes between acidic and neutral during these events, pH-sensitive FPs with near neutral pKa, such as pHluorin, are particularly useful. FPs with pKa>6 are readily available in the green spectrum, while red-emitting pH-sensitive FPs are rare and often not well characterized as reporters of exo- or endocytosis. Here we tested a panel of ten orange/red and two green FPs in fusions with neuropeptide Y (NPY) for use as secreted vesicle marker and reporter of dense core granule exocytosis and release. We report relative brightness, bleaching rate, targeting accuracy, sensitivity to vesicle pH, and their performance in detecting exocytosis in live cells. Tandem dimer (td)-mOrange2 was identified as well-targeted, bright, slowly bleaching and pH-sensitive FP that performed similar to EGFP. Single exocytosis events were readily observed, which allowed measurements of fusion pore lifetime and the dynamics of the exocytosis protein syntaxin at the release site during membrane fusion and cargo release.  相似文献   

10.
In modern biotechnological science, there is a need for visualization of objects under study at the levels of cells, organelles, and individual molecules. Prominent among imaging methods are the methods based on the detection of fluorescence from the fluorophores with which objects under study are labeled. Fluorescent proteins (FPs) are very popular as genetically encoded fluorescent labels for lifetime imaging of target structures and processes in living systems. One of the key characteristics of FPs is their photostability, i.e., their resistance to photochemical reactions that quench the fluorescence signal. This review describes the currently known molecular mechanisms underlying photobleaching and the methods used to improve the photostability of fluorescent proteins.  相似文献   

11.
A colorful variety of fluorescent proteins (FPs) from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP)-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that ∼15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37°C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.  相似文献   

12.
The photo-intermediate state of bacteriorhodopsin is a metastable state that spontaneously transforms to the ground state over the energy barrier of a local minimum. As the recovery of the photocycle to the ground state and irreversible photobleaching to the denatured state may occur from the same local energy minimum, depending on the temperature, the structural stability of bacteriorhodopsin under illumination at high temperature was measured in order to study the intra- and inter-molecular interactions that contribute to the recovery of the ground state. Visible CD spectra of bacteriorhodopsin began to change at 60 degrees C from a bilobed to positive type in accordance with an appearance of an absorption peak at 470 nm. Irreversible photobleaching, the light-induced denaturation, also started to occur at 60 degrees C, suggesting some correlation between irreversible photobleaching and the structural change to the high-temperature intermediate state. However, bacteriorhodopsin in the dark was stable up to 70 degrees C, suggesting that there is some additional factor that lends structural stability to bacteriorhodopsin in the dark. The contribution of protein-protein interactions to stability is discussed on the basis of the difference in the denaturation behaviors between light and dark conditions.  相似文献   

13.
《Biophysical journal》2021,120(19):4230-4241
Quantitative cell biology requires precise and accurate concentration measurements, resolved both in space and time. Fluorescence correlation spectroscopy (FCS) has been held as a promising technique to perform such measurements because the fluorescence fluctuations it relies on are directly dependent on the absolute number of fluorophores in the detection volume. However, the most interesting applications are in cells, where autofluorescence and confinement result in strong background noise and important levels of photobleaching. Both noise and photobleaching introduce systematic bias in FCS concentration measurements and need to be corrected for. Here, we propose to make use of the photobleaching inevitably occurring in confined environments to perform series of FCS measurements at different fluorophore concentration, which we show allows a precise in situ measurement of both background noise and molecular brightness. Such a measurement can then be used as a calibration to transform confocal intensity images into concentration maps. The power of this approach is first illustrated with in vitro measurements using different dye solutions, then its applicability for in vivo measurements is demonstrated in Drosophila embryos for a model nuclear protein and for two morphogens, Bicoid and Capicua.  相似文献   

14.
Circularly permuted fluorescent proteins (FPs) have a growing number of uses in live cell fluorescence biosensing applications. Most notably, they enable the construction of single fluorescent protein‐based biosensors for Ca2+ and other analytes of interest. Circularly permuted FPs are also of great utility in the optimization of fluorescence resonance energy transfer (FRET)‐based biosensors by providing a means for varying the critical dipole–dipole orientation. We have previously reported on our efforts to create circularly permuted variants of a monomeric red FP (RFP) known as mCherry. In our previous work, we had identified six distinct locations within mCherry that tolerated the insertion of a short peptide sequence. Creation of circularly permuted variants with new termini at the locations corresponding to the sites of insertion led to the discovery of three permuted variants that retained no more than 18% of the brightness of mCherry. We now report the extensive directed evolution of the variant with new termini at position 193 of the protein sequence for improved fluorescent brightness. The resulting variant, known as cp193g7, has 61% of the intrinsic brightness of mCherry and was found to be highly tolerant of circular permutation at other locations within the sequence. We have exploited this property to engineer an expanded series of circularly permuted variants with new termini located along the length of the 10th β‐strand of mCherry. These new variants may ultimately prove useful for the creation of single FP‐based Ca2+ biosensors.  相似文献   

15.
Fluorescent proteins (FPs) have become popular imaging tools because of their high specificity, minimal invasive labeling and allowing visualization of proteins and structures inside living organisms. FPs are genetically encoded and expressed in living cells, therefore, labeling involves minimal effort in comparison to approaches involving synthetic dyes. Photoactivatable FPs (paFPs) comprise a subclass of FPs that can change their absorption/emission properties such as brightness and color upon irradiation. This methodology has found a broad range of applications in the life sciences, especially in localization-based super-resolution microscopy of cells, tissues and even entire organisms. In this review, we discuss recent developments and applications of paFPs in super-resolution localization imaging.  相似文献   

16.
The future of the Amazon rainforest is unknown due to uncertainties in projected climate change and the response of the forest to this change (forest resiliency). Here, we explore the effect of some uncertainties in climate and land surface processes on the future of the forest, using a perturbed physics ensemble of HadCM3C. This is the first time Amazon forest changes are presented using an ensemble exploring both land vegetation processes and physical climate feedbacks in a fully coupled modelling framework. Under three different emissions scenarios, we measure the change in the forest coverage by the end of the 21st century (the transient response) and make a novel adaptation to a previously used method known as “dry‐season resilience” to predict the long‐term committed response of the forest, should the state of the climate remain constant past 2100. Our analysis of this ensemble suggests that there will be a high chance of greater forest loss on longer timescales than is realized by 2100, especially for mid‐range and low emissions scenarios. In both the transient and predicted committed responses, there is an increasing uncertainty in the outcome of the forest as the strength of the emissions scenarios increases. It is important to note however, that very few of the simulations produce future forest loss of the magnitude previously shown under the standard model configuration. We find that low optimum temperatures for photosynthesis and a high minimum leaf area index needed for the forest to compete for space appear to be precursors for dieback. We then decompose the uncertainty into that associated with future climate change and that associated with forest resiliency, finding that it is important to reduce the uncertainty in both of these if we are to better determine the Amazon's outcome.  相似文献   

17.
Using the method of binocular brightness matching, simultaneous brightness contrast effects were measured on two observers. The effects of a given pattern were invariably smaller than the summation of the effects of the pattern's components. This failure of additivity was valid both for patterns with isolated components as well as for those with components exactly contiguous with one another. This failure was more pronounced the farther the inducing patterns were from the test patch. These findings are interpreted as indicating that in the human (just as in the Limulus) eye, the amount of inhibition exerted by a given region on its neighbors depends upon the inhibition exerted against it as well as its excitation state.  相似文献   

18.
Total internal reflection-fluorescence recovery after photobleaching (TIR-FRAP) was applied to measure solute translational diffusion in the aqueous phase of membrane-adjacent cytoplasm. TIR fluorescence excitation in aqueous solutions and fluorescently labeled cells was produced by laser illumination at a subcritical angle utilizing a quartz prism; microsecond-resolution FRAP was accomplished by acousto-optic modulators and electronic photomultiplier gating. A mathematical model was developed to determine solute diffusion coefficient from the time course of photobleaching recovery, bleach time, bleach intensity, and evanescent field penetration depth; the model included irreversible and reversible photobleaching processes, with triplet state diffusion. The validity and accuracy of TIR-FRAP measurements were first examined in aqueous fluorophore solutions. Diffusion coefficients for fluorescein isothiocyanate-dextrans (10-2000 kDa) determined by TIR-FRAP (recovery t1/2 0.5-2.2 ms) agreed with values measured by conventional spot photobleaching. Model predictions for the dependence of recovery curve shape on solution viscosity, bleach time, and bleach depth were validated experimentally using aqueous fluorescein solutions. To study solute diffusion in cytosol, MDCK epithelial cells were fluorescently labeled with the small solute 2',7'-bis-2-carboxyethyl-5-carboxyfluorescein-acetoxymethyl-ester (BCECF). A reversible photobleaching process (t1/2 approximately 0.5 ms) was identified that involved triplet-state relaxation and could be eliminated by triplet-state quenching with 100% oxygen. TIR-FRAP t1/2 values for irreversible BCECF bleaching, representing BCECF translational diffusion in the evanescent field, were in the range 2.2-4.8 ms (0.2-1 ms bleach times), yielding a BCECF diffusion coefficient 6-10-fold less than that in water. These results establish the theory and the first experimental application of TIR-FRAP to measure aqueous-phase solute diffusion, and indicate slowed translational diffusion of a small solute in membrane-adjacent cytosol.  相似文献   

19.
Myosin II isoforms with varying mechanochemistry and filament size interact with filamentous actin (F-actin) arrays to generate contractile forces in muscle and nonmuscle cells. How myosin II force production is shaped by isoform-specific motor properties and environmental stiffness remains poorly understood. Here, we used computer simulations to analyze force production by an ensemble of myosin motors against an elastically tethered actin filament. We found that force output depends on two timescales: the duration of F-actin attachment, which varies sharply with the ensemble size, motor duty ratio, and external load; and the time to build force, which scales with the ensemble stall force, gliding speed, and environmental stiffness. Although force-dependent kinetics were not required to sense changes in stiffness, the myosin catch bond produced positive feedback between the attachment time and force to trigger switch-like transitions from transient attachments, generating small forces, to high-force-generating runs. Using parameters representative of skeletal muscle myosin, nonmuscle myosin IIB, and nonmuscle myosin IIA revealed three distinct regimes of behavior, respectively: 1) large assemblies of fast, low-duty ratio motors rapidly build stable forces over a large range of environmental stiffness; 2) ensembles of slow, high-duty ratio motors serve as high-affinity cross-links with force buildup times that exceed physiological timescales; and 3) small assemblies of low-duty ratio motors operating at intermediate speeds are poised to respond sharply to changes in mechanical context—at low force or stiffness, they serve as low-affinity cross-links, but they can transition to force production via the positive-feedback mechanism described above. Together, these results reveal how myosin isoform properties may be tuned to produce force and respond to mechanical cues in their environment.  相似文献   

20.
Solution nuclear magnetic resonance (NMR) spectroscopy is unique in its ability to elucidate the details of atomic-level structural and dynamical properties of biological macromolecules under native-like conditions. Recent advances in NMR techniques and protein sample preparation now allow comprehensive investigation of protein dynamics over timescales ranging 14 orders of magnitude at nearly every atomic site. Thus, solution NMR is poised to reveal aspects of the physico-chemical properties that govern the ensemble distribution of protein conformers and the dynamics of their interconversion. We review these advances as well as their recent application to the study of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号