首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations of the glycine residue at the amino terminus of HA2 have been shown to have a large effect on the fusion activity of HA2, the extent of which apparently correlates with the side chain bulkiness of the substituting amino acids. To investigate into the cause of abrogation in fusogenicity and virus-promoted fusion mechanism, we synthesized several peptides in which this glycine was substituted by serine, glutamic acid, or lysine. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl sn-glycero-3-phosphoglycerol (DMPG) were used as model membranes in the fluorescence, circular dichroism (CD), and FTIR measurements while sodium dodecyl sulfate was used in NMR studies. We found that, for the less active variants, affinity to membrane, degree of solvent dehydration, lipid perturbation, depth of insertion, and helicity were less. Comparison of affinity to membrane bilayer among these analogs revealed that binding of the fusion peptide is determined largely by the hydrophobic effect. Additionally, the orientation is closer to the membrane normal for the wild-type fusion peptide in the helix form while the inactive analogs inserted more parallel to the membrane surface.  相似文献   

2.
Mutations of the glycine residue at the amino terminus of HA2 have been shown to have a large effect on the fusion activity of HA2, the extent of which apparently correlates with the side chain bulkiness of the substituting amino acids. To investigate into the cause of abrogation in fusogenicity and virus-promoted fusion mechanism, we synthesized several peptides in which this glycine was substituted by serine, glutamic acid, or lysine. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl sn-glycero-3-phosphoglycerol (DMPG) were used as model membranes in the fluorescence, circular dichroism (CD), and FTIR measurements while sodium dodecyl sulfate was used in NMR studies. We found that, for the less active variants, affinity to membrane, degree of solvent dehydration, lipid perturbation, depth of insertion, and helicity were less. Comparison of affinity to membrane bilayer among these analogs revealed that binding of the fusion peptide is determined largely by the hydrophobic effect. Additionally, the orientation is closer to the membrane normal for the wild-type fusion peptide in the helix form while the inactive analogs inserted more parallel to the membrane surface.  相似文献   

3.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

4.
The effect of nonionic detergents of the n-alkyl-β-D-glucopyranoside class on the ordering of lipid bilayers and the dynamics of membrane-embedded peptides were investigated with 2H- and 31P-NMR. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was selectively deuterated at methylene segments C-2, C-7, and C-16 of the two fatty acyl chains. Two trans-membrane helices, WALP-19 and glycophorin A71-98, were synthesized with Ala-d3 in the central region of the α-helix. n-Alkyl-β-D-glucopyranosides with alkyl chains with 6, 7, 8, and 10 carbon atoms were added at increasing concentrations to the lipid membrane. The bilayer structure is retained up to a detergent/lipid molar ratio of 1:1. The insertion of the detergents leads to a selective disordering of the lipids. The headgroup region remains largely unaffected; the fatty acyl chain segments parallel to the detergent alkyl chain are only modestly disordered (10-20%), whereas lipid segments beyond the methyl terminus of the detergent show a decrease of up to 50%. The change in the bilayer order profile corresponds to an increase in bilayer entropy. Insertion of detergents into the lipid bilayers is completely entropy-driven. The entropy change accompanying lipid disorder is equivalent in magnitude to the hydrophobic effect. Ala-d3 deuterated WALP-19 and GlycA71-97 were incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine at a peptide/lipid molar ratio of 1:100 and measured above the 1,2-dimyristoyl-sn-glycero-3-phosphocholine gel/liquid-crystal phase transition. Well-resolved 2H-NMR quadrupole splittings were observed for the two trans-membrane helices, revealing a rapid rotation of the CD3 methyl rotor superimposed on an additional rotation of the whole peptide around the bilayer normal. The presence of detergent fluidizes the membrane and produces magnetic alignment of bilayer domains but does not produce essential changes in the peptide conformation or dynamics.  相似文献   

5.
Li Y  Han X  Tamm LK 《Biochemistry》2003,42(23):7245-7251
The fusion peptides of viral membrane fusion proteins play a key role in the mechanism of viral spike glycoprotein mediated membrane fusion. These peptides insert into the lipid bilayers of cellular target membranes where they adopt mostly helical secondary structures. To better understand how membranes may be converted to high-energy intermediates during fusion, it is of interest to know how much energy, enthalpy and entropy, is provided by the insertion of fusion peptides into lipid bilayers. Here, we describe a detailed thermodynamic analysis of the binding of analogues of the influenza hemagglutinin fusion peptide of different lengths and amino acid compositions. In small unilamellar vesicles, the interaction of these peptides with lipid bilayers is driven by enthalpy (-16.5 kcal/mol) and opposed by entropy (-30 cal mol(-1) K(-1)). Most of the driving force (deltaG = -7.6 kcal/mol) comes from the enthalpy of peptide insertion deep into the lipid bilayer. Enthalpic gains and entropic losses of peptide folding in the lipid bilayer cancel to a large extent and account for only about 40% of the total binding free energy. The major folding event occurs in the N-terminal segment of the fusion peptide. The C-terminal segment mainly serves to drive the N-terminus deep into the membrane. The fusion-defective mutations G1S, which causes hemifusion, and particularly G1V, which blocks fusion, have major structural and thermodynamic consequences on the insertion of fusion peptides into lipid bilayers. The magnitudes of the enthalpies and entropies of binding of these mutant peptides are reduced, their helix contents are reduced, but their energies of self-association at the membrane surface are increased compared to the wild-type fusion peptide.  相似文献   

6.
A short sequence on the gp41 envelope protein of HIV-1 is integral to infection by the virus. Without this sequence, termed the fusion peptide (FP), the virus is far less effective at fusing with the cellular membrane. One of the interesting features of the isolated FP is that it transitions between an α-helical conformation and a β-sheet conformation in lipid bilayer membranes as a function of lipid composition and concentration, and the transition correlates with fusion. To better understand how the conformations of the FP impact lipid bilayer membranes, a variant of the FP that does not strongly promote fusion, termed gp41rk, was studied. Circular dichroism spectroscopy, dynamic light scattering, small-angle neutron scattering (SANS) and neutron spin echo spectroscopy (NSE) were used to relate the conformation of gp41rk to the structure and mechanical properties of lipid bilayer membrane vesicles composed of a 7:3 molar ratio mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol). At a peptide-to-lipid ratio (P/L) of 1/200, it adopts an α-helical conformation, while gp41rk is a β-sheet at a P/L of 1/50 in the unilamellar vesicles. SANS reveals that the lipid bilayer membrane becomes thicker when gp41rk adopts a β-sheet conformation, which indicates that the high-concentration state of the peptide increases the order of the lipid acyl chains. At the same time, NSE demonstrates that the bilayer becomes more rigid, demonstrating that the β-sheet conformation, which correlates with fusion for the native FP sequence, stiffens the bilayer. The results have implications for the function of the FP.  相似文献   

7.
The amino-terminal segment of the membrane-anchored subunit of influenza hemagglutinin (HA) plays a crucial role in membrane fusion and, hence, has been termed the fusion peptide. We have studied the secondary structure, orientation, and effects on the bilayer structure of synthetic peptides corresponding to the wild-type and several fusogenic and nonfusogenic mutants with altered N-termini of the influenza HA fusion peptide by fluorescence, circular dichroism, and Fourier transform infrared spectroscopy. All peptides contained segments of alpha-helical and beta-strand conformation. In the wild-type fusion peptide, 40% of all residues were in alpha-secondary and 30% in beta-secondary structures. By comparison, the nonfusogenic peptides exhibited larger beta/alpha secondary structure ratios. The order parameters of the helices and the amide carbonyl groups of the beta-strands of the wild-type fusion peptide were measured separately, based on the infrared dichroism of the respective absorption bands. Order parameters in the range 0.1-0.7 were found for both segments of the wild-type peptide, which indicates that they are most likely aligned at oblique angles to the membrane normal. The nonfusogenic but not the fusogenic peptides induced splitting of the infrared absorption band at 1735 cm(-1), which is assigned to stretching vibrations of the lipid ester carbonyl bond. This splitting, which reports on an alteration of the hydrogen bonds formed between the lipid ester carbonyls and water and/or hydrogen-donating groups of the fusion peptides, correlated with the beta/alpha ratio of the peptides, suggesting that unpaired beta-strands may replace water molecules and hydrogen-bond to the lipid ester carbonyl groups. The profound structural changes induced by single amino acid replacements at the extreme N-terminus of the fusion peptide further suggest that tertiary or quaternary structural interactions may be important when fusion peptides bind to lipid bilayers.  相似文献   

8.
X Han  D A Steinhauer  S A Wharton  L K Tamm 《Biochemistry》1999,38(45):15052-15059
The amino-terminal region of the membrane-anchored subunit of influenza virus hemagglutinin, the fusion peptide, is crucial for membrane fusion of this virus. The peptide is extruded from the interior of the protein and inserted into the lipid bilayer of the target membrane upon induction of a conformational change in the protein by low pH. Although the effects of several mutations in this region on the fusion behavior and the biophysical properties of the corresponding peptides have been studied, the structural requirements for an active fusion peptide have still not been defined. To probe the sensitivity of the fusion peptide structure and function to small hydrophobic perturbations in the middle of the hydrophobic region, we have individually replaced the alanine residues in positions 5 and 7 with smaller (glycine) or bulkier (valine) hydrophobic residues and measured the extent of fusion mediated by these hemagglutinin constructs as well as some biophysical properties of the corresponding synthetic peptides in lipid bilayers. We find that position 5 tolerates a smaller and position 7 a larger hydrophobic side chain. All peptides contained segments of alpha-helical (33-45%) and beta-strand (13-16%) conformation as determined by CD and ATR-FTIR spectroscopy. The order parameters of the peptide helices and the lipid hydrocarbon chains were determined from measurements of the dichroism of the respective infrared absorption bands. Order parameters in the range of 0.0-0.6 were found for the helices of these peptides, which indicate that these peptides are most likely aligned with their alpha-helices at oblique angles to the membrane normal. Some (mostly fusogenic) peptides induced significant increases of the order parameter of the lipid hydrocarbon chains, suggesting that the lipid bilayer becomes more ordered in the presence of these peptides, possibly as a result of dehydration at the membrane surface.  相似文献   

9.
Li Y  Han X  Lai AL  Bushweller JH  Cafiso DS  Tamm LK 《Journal of virology》2005,79(18):12065-12076
Influenza virus hemagglutinin (HA)-mediated membrane fusion is initiated by a conformational change that releases a V-shaped hydrophobic fusion domain, the fusion peptide, into the lipid bilayer of the target membrane. The most N-terminal residue of this domain, a glycine, is highly conserved and is particularly critical for HA function; G1S and G1V mutant HAs cause hemifusion and abolish fusion, respectively. We have determined the atomic resolution structures of the G1S and G1V mutant fusion domains in membrane environments. G1S forms a V with a disrupted "glycine edge" on its N-terminal arm and G1V adopts a slightly tilted linear helical structure in membranes. Abolishment of the kink in G1V results in reduced hydrophobic penetration of the lipid bilayer and an increased propensity to form beta-structures at the membrane surface. These results underline the functional importance of the kink in the fusion peptide and suggest a structural role for the N-terminal glycine ridge in viral membrane fusion.  相似文献   

10.
A detailed molecular dynamics study of the haemagglutinin fusion peptide (N-terminal 20 residues of the HA2 subunits) in a model bilayer has yielded useful information about the molecular interactions leading to insertion into the lipids. Simulations were performed on the native sequence, as well as a number of mutant sequences, which are either fusogenic or nonfusogenic. For the native sequence and fusogenic mutants, the N-terminal 11 residues of the fusion peptides are helical and insert with a tilt angle of approximately 30 degrees with respect to the membrane normal, in very good agreement with experimental data. The tilted insertion of the native sequence peptide leads to membrane bilayer thinning and the calculated order parameters show larger disorder of the alkyl chains. These results indicate that the lipid packing is perturbed by the fusion peptide and could be used to explain membrane fusion. For the nonfusogenic sequences investigated, it was found that most of them equilibrate parallel to the interface plane and do not adopt a tilted conformation. The presence of a charged residue at the beginning of the sequence (G1E mutant) resulted in a more difficult case, and the outcomes do not fall straightforwardly into the general picture. Sequence searches have revealed similarities of the fusion peptide of influenza haemagglutinin with peptide sequences such as segments of porin, amyloid alpha eta peptide, and a peptide from the prion sequence. These results confirm that the sequence can adopt different folds in different environments. The plasticity and the conformational dependence on the local environment could be used to better understand the function of fusion peptides.  相似文献   

11.
PEG-mediated fusion of SUVs composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, sphingomyelin, cholesterol, and dioleoylphosphatidylserine was examined to investigate the effects of PS on the fusion mechanism. Lipid mixing, content mixing, and content leakage measurements were carried out with vesicles containing from 0 to 8 mol % PS and similar amounts of phosphatidylglycerol. Fitting these time courses globally to a 3-state (aggregate, intermediate, pore) sequential model established rate constants for each step and probabilities of lipid mixing, content mixing, and leakage in each state. Charged lipids inhibited both the rates of intermediate and pore formation as well as the extents of lipid and contents mixing, although electrostatics were not solely responsible for inhibition. Ca2+ counteracted this inhibition and increased the extent of fusion in the presence of PS to well beyond that seen in the absence of charged lipids. The effects of both PS and Ca2+ could be interpreted in terms of a previous proposal for the nature of lipid fluctuations that account for transition states for the two steps of the fusion process examined. The results suggest a more significant role for Ca2+-lipid interactions than is acknowledged in current thinking about cell membrane fusion.Abbreviations used: SUVs, small unilamellar vesicles; DOPC, 1,2-dioleoyl-3-sn-phosphatidylcholine; DOPE, 1,2-dioleoyl-3-sn-phosphatidylethanolamine; SM, sphingomyelin (bovine brain); CH, Cholesterol; DOPS, 1,2-dioleoyl-3-sn-phosphatidylserine; PS, phosphatidylserine; DOPG, 1,2-dioleoyl-3-sn-phosphatidylglycerol; PG, phosphatidylglycerol; TES, N- tris(hydroxymethyl)methyl}2-2-aminoethane sulfonic acid; PEG, poly(ethylene glycol); CM, contents mixing; LM, lipid mixing  相似文献   

12.
The structures of the 16-residue fusion domain (or fusion peptide, FP) of the human immunodeficiency virus gp41 fusion protein, two of its mutants, and a shortened peptide (5-16) were studied by molecular dynamics simulation in an explicit palmitoyloleoylphosphoethanolamine bilayer. The simulations showed that the active wild-type FP inserts into the bilayer approximately 44 degrees +/- 6 degrees with respect to the bilayer normal, whereas the inactive V2E and L9R mutants and the inactive 5 to 16 fragment lie on the bilayer surface. This is the first demonstration by explicit molecular dynamics of the oblique insertion of the fusion domain into lipid bilayers, and provides correlation between the mode of insertion and the fusogenic activity of these peptides. The membrane structure of the wild-type FP is remarkably similar to that of the influenza HA(2) FP as determined by nuclear magnetic resonance and electron spin resistance power saturation. The secondary structures of the wild-type FP and the two inactive mutants are quite similar, indicating that the secondary structure of this fusion domain plays little or no role in affecting the fusogenic activity of the fusion peptide. The insertion of the wild-type FP increases the thickness of the interfacial area of the bilayer by disrupting the hydrocarbon chains and extending the interfacial area toward the head group region, an effect that was not observed in the inactive FPs.  相似文献   

13.
Fusion of influenza viruses with target membranes is induced by acid and involves complex changes in the viral fusion protein hemagglutinin (HA) and in the contact sites between viruses and target membranes (Stegmann, T., White, J. M., and Helenius, A. (1990) EMBO J. 9, 4231-4241). At 0 degrees C, in a first, kinetically distinct step, target membranes irreversibly adhere to the viruses. Fusion itself starts only after a lag-phase of several minutes (X-31 strain viruses) or after raising the temperature (PR8/34 strain viruses). We now provide evidence that the initial conformational change resulting in virus-target membrane adhesion is restricted to a (minor) subpopulation of the HA molecules. These molecules become susceptible to bromelain digestion, and they could be labeled with the photoactivatable reagent [3H]PTPC/11, a nonexchangeable lipid present in the target lipid bilayer (Harter, C., B?chi, T., Semenza, G., and Brunner, J. (1988) Biochemistry 27, 1856-1864). Only the HA2 subunit was labeled, and analyses of 2-nitro-5-thio-cyanobenzoic acid fragments derived thereof indicate that the HA2 NH2-terminal segment (fusion peptide) inserted into the target membrane bilayer. When the temperature was raised to trigger fusion of PR8/34 viruses, labeling of HA2 increased by a factor of 130. Most (74%) of that label was incorporated into the COOH-terminal membrane anchor region, but there was also a strong increase (about 30-fold) of NH2-terminal fusion peptide labeling. This suggests that fusion is preceded., or accompanied, by further changes in HA which lead to additional extensive lipid insertions of HA2 fusion peptides.  相似文献   

14.
Viral fusion peptides are short N-terminal regions of type-1 viral fusion proteins that are critical for virus entry. Although the importance of viral fusion peptides in virus-cell membrane fusion is established, little is known about how they function. We report the effects of wild-type (WT) hemagglutinin (HA) fusion peptide and its G1S, G1V, and W14A mutants on the kinetics of poly(ethylene glycol)(PEG)-mediated fusion of small unilamellar vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, sphingomyelin, and cholesterol (molar ratio of 35:30:15:20). Time courses of lipid mixing, content mixing, and content leakage were obtained using fluorescence assays at multiple temperatures and analyzed globally using either a two-step or three-step sequential ensemble model of the fusion process to obtain the rate constant and activation thermodynamics of each step. We also monitored the influence of peptides on bilayer interfacial order, acyl chain order, bilayer free volume, and water penetration. All these data were considered in terms of a recently published mechanistic model for the thermodynamic transition states for each step of the fusion process. We propose that WT peptide catalyzes Step 1 by occupying bilayer regions vacated by acyl chains that protrude into interbilayer space to form the Step 1 transition state. It also uniquely contributes a positive intrinsic curvature to hemi-fused leaflets to eliminate Step 2 and catalyzes Step 3 by destabilizing the highly stressed edges of the hemi-fused microstructures that dominate the ensemble of the intermediate state directly preceding fusion pore formation. Similar arguments explain the catalytic and inhibitory properties of the mutant peptides and support the hypothesis that the membrane-contacting fusion peptide of HA fusion protein is key to its catalytic activity.  相似文献   

15.
Viral fusion peptides are short N-terminal regions of type-1 viral fusion proteins that are critical for virus entry. Although the importance of viral fusion peptides in virus-cell membrane fusion is established, little is known about how they function. We report the effects of wild-type (WT) hemagglutinin (HA) fusion peptide and its G1S, G1V, and W14A mutants on the kinetics of poly(ethylene glycol)(PEG)-mediated fusion of small unilamellar vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, sphingomyelin, and cholesterol (molar ratio of 35:30:15:20). Time courses of lipid mixing, content mixing, and content leakage were obtained using fluorescence assays at multiple temperatures and analyzed globally using either a two-step or three-step sequential ensemble model of the fusion process to obtain the rate constant and activation thermodynamics of each step. We also monitored the influence of peptides on bilayer interfacial order, acyl chain order, bilayer free volume, and water penetration. All these data were considered in terms of a recently published mechanistic model for the thermodynamic transition states for each step of the fusion process. We propose that WT peptide catalyzes Step 1 by occupying bilayer regions vacated by acyl chains that protrude into interbilayer space to form the Step 1 transition state. It also uniquely contributes a positive intrinsic curvature to hemi-fused leaflets to eliminate Step 2 and catalyzes Step 3 by destabilizing the highly stressed edges of the hemi-fused microstructures that dominate the ensemble of the intermediate state directly preceding fusion pore formation. Similar arguments explain the catalytic and inhibitory properties of the mutant peptides and support the hypothesis that the membrane-contacting fusion peptide of HA fusion protein is key to its catalytic activity.  相似文献   

16.
Two synthetic mutants of influenza HA2 fusion peptide (residues 1-25), containing Glu on the polar (residues 4,8-E5(4,8)) or the hydrophobic (residues 3,7-E5(3,7)) face of the amphipathic helix, were synthesized and labeled with NBD at the N-terminus. Introduction of Glu residues into the fusion peptide leads to increased sensitivity of various biochemical properties to pH compared to the wild type. The E5 peptides showed a decrease of alpha-helix content and increase of beta-sheet structure. Lipid binding was diminished, but not abolished even at high pH. The E5 analogs penetrate the lipid bilayer less deeply than the wild type, especially at high pH. The N-terminal half of the peptide showed significant variation of the depth of the penetration into the lipid bilayer. Both E5 peptides were fusion active. The properties of E5(3,7) were more affected by the Glu substitution and showed greater variation with pH than E5(4,8).  相似文献   

17.
To better understand peptide-induced membrane fusion at a molecular level, we set out to determine the structure of the fusogenic peptide FP23 from the HIV-1 protein gp41 when bound to a lipid bilayer. An established solid-state 19F nuclear magnetic resonance (NMR) approach was used to collect local orientational constraints from a series of CF3-phenylglycine-labeled peptide analogues in macroscopically aligned membranes. Fusion assays showed that these 19F-labels did not significantly affect peptide function. The NMR spectra were characteristic of well-behaved samples, without any signs of heterogeneity or peptide aggregation at 1:300 in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). We can conclude from these NMR data that FP23 has a well-defined (time-averaged) conformation and undergoes lateral diffusion in the bilayer plane, presumably as a monomer or small oligomer. Attempts to evaluate its conformation in terms of various secondary structures, however, showed that FP23 does not form any type of regular helix or β-strand. Therefore, all-atom molecular dynamics (MD) simulations were carried out using the orientational NMR constraints as pseudo-forces to drive the peptide into a stable alignment and structure. The resulting picture suggests that FP23 can adopt multiple β-turns and insert obliquely into the membrane. Such irregular conformation explains why the structure of the fusion peptide could not be reliably determined by any biophysical method so far.  相似文献   

18.
Deployment of membrane fusion protein domains during fusion   总被引:2,自引:0,他引:2  
It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion proteins SV5 F1 and HIV gp120/41, and for the intracellular SNARE fusion system. By comparing these domains, we have constructed a minimal set which appears to be adequate to explain how the conformational changes can produce a successful fusion event, i.e. communication of aqueous compartments.  相似文献   

19.
The conformation and interactions with membrane mimics of the NH(2)-terminal fragment 1-25 of HA2, HA2-(1-25), of influenza virus were studied by spectroscopic methods. Secondary structure analysis of circular dichroism data revealed 45% helix for the peptide at pH 5.0. Tryptophan fluorescence quenching by acrylamide and NMR experiments established that the Trp(14) is inside the vesicular interior and residues 16-18 are at the micellar aqueous boundary. NBD fluorescence enhancement of the NH(2)-terminal labeled fluorophore on the vesicle-bound peptide indicated that the NH(2) terminus of the fusion peptide was located in the hydrophobic region of the lipid bilayer. No significant change in insertion depth was observed between pH 5.0 and 7.4. Collectively, these spectroscopic measurements pointed to an equilibrium between helix and non-helix conformations, with helix being the dominant form, for the segment in the micellar interior. The conformational transition may be facilitated by the high content of glycine, a conformationally flexible amino acid, within the fusion peptide sequence. Self-association of the 25-mer peptide was observed in the N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine SDS-gel electrophoresis experiments. Incorporating the NMR signal attenuation, fluorescence, and gel electrophoresis data, a working model for the organization of the fusion peptide in membrane bilayers was proposed.  相似文献   

20.
Melittin is an amphipathic peptide which has received much attention as a model peptide for peptide–membrane interactions. It is however not suited as a transfection agent due to its cytolytic and toxicological effects. Retro-inverso-melittin, when covalently linked to the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (riDOM), eliminates these shortcomings. The interaction of riDOM with phospholipid membranes was investigated with circular dichroism (CD) spectroscopy, dynamic light scattering, ζ-potential measurements, and high-sensitivity isothermal titration calorimetry. riDOM forms cationic nanoparticles with a diameter of ~ 13 nm which are well soluble in water and bind with high affinity to DNA and lipid membranes. When dissolved in bilayer membranes, riDOM nanoparticles dissociate and form transient pores. riDOM-induced membrane leakiness is however much reduced compared to that of authentic melittin. The secondary structure of the ri-melittin is not changed when riDOM is transferred from water to the membrane and displays a large fraction of β-structure. The 31P NMR spectrum of the nanoparticle is however transformed into a typical bilayer spectrum. The Gibbs free energy of riDOM binding to bilayer membranes is − 8.0 to − 10.0 kcal/mol which corresponds to the partition energy of just one fatty acyl chain. Half of the hydrophobic surface of the riDOM lipid extension with its 2 oleic acyl chains is therefore involved in a lipid–peptide interaction. This packing arrangement guarantees a good solubility of riDOM both in the aqueous and in the membrane phase. The membrane binding enthalpy is small and riDOM binding is thus entropy-driven.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号