首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embryogenesis relies on instructions provided by spatially organized signaling molecules known as morphogens. Understanding the principles behind morphogen distribution and how cells interpret locally this information remains a major challenge in developmental biology. Here, we introduce morphogen‐age measurements as a novel approach to test models of morphogen gradient formation. Using a tandem fluorescent timer as a protein age sensor, we find a gradient of increasing age of Bicoid along the anterior–posterior axis in the early Drosophila embryo. Quantitative analysis of the protein age distribution across the embryo reveals that the synthesis–diffusion–degradation model is the most likely model underlying Bicoid gradient formation, and rules out other hypotheses for gradient formation. Moreover, we show that the timer can detect transitions in the dynamics associated with syncytial cellularization. Our results provide new insight into Bicoid gradient formation and demonstrate how morphogen‐age information can complement knowledge about movement, abundance, and distribution, which should be widely applicable to other systems.  相似文献   

2.
Chen H  Xu Z  Mei C  Yu D  Small S 《Cell》2012,149(3):618-629
The homeodomain (HD) protein Bicoid (Bcd) is thought to function as a gradient morphogen that positions boundaries of target genes via threshold-dependent activation mechanisms. Here, we analyze 66 Bcd-dependent regulatory elements and show that their boundaries are positioned primarily by repressive gradients that antagonize Bcd-mediated activation. A major repressor is the pair-rule protein Runt (Run), which is expressed in an opposing gradient and is necessary and sufficient for limiting Bcd-dependent activation. Evidence is presented that Run functions with the maternal repressor Capicua and the gap protein Kruppel as the principal components of a repression system that correctly orders boundaries throughout the anterior half of the embryo. These results put conceptual limits on the Bcd morphogen hypothesis and demonstrate how the Bcd gradient functions within the gene network that patterns the embryo.  相似文献   

3.
Morphogen gradients, which provide positional information to cells in a developing tissue, could in principle adopt any nonuniform profile. To our knowledge, how the profile of a morphogen gradient affects positional precision has not been well studied experimentally. Here, we compare the positional precision provided by the Drosophila morphogenetic protein Bicoid (Bcd) in wild-type (wt) embryos with embryos lacking an interacting cofactor. The Bcd gradient in the latter case exhibits decreased positional precision around mid-embryo compared with its wt counterpart. The domain boundary of Hunchback (Hb), a target activated by Bcd, becomes more variable in mutant embryos. By considering embryo-to-embryo, internal, and measurement fluctuations, we dissect mathematically the relevant sources of fluctuations that contribute to the error in positional information. Using this approach, we show that the defect in Hb boundary positioning in mutant embryos is directly reflective of an altered Bcd gradient profile with increasing flatness toward mid-embryo. Furthermore, we find that noise in the Bcd input signal is dominated by internal fluctuations but, due to time and spatial averaging, the spatial precision of the Hb boundary is primarily affected by embryo-to-embryo variations. Our results demonstrate that the positional information provided by the wt Bcd gradient profile is highly precise and necessary for patterning precision.  相似文献   

4.
Erickson JL 《Fly》2011,5(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their ability to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imperative to the two central themes in gradient formation: active transport facilitating long-range signaling and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane-mediated processes of re-secretion, degradation and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

5.
Liu J  He F  Ma J 《Fly》2011,5(3):242-246
In a recent publication, we identified a novel F-box protein, encoded by fates-shifted (fsd), that plays a role in targeting Bcd for ubiquitination and degradation. Our analysis of mutant Drosophila embryos suggests that Bcd protein degradation is important for proper gradient formation and developmental fate specification. Here we describe further experiments that lead to an estimate of Bcd half-life, < 15 min, in embryos during the time of gradient formation. We use our findings to evaluate different models of Bcd gradient formation. With this new estimate, we simulate the Bcd gradient formation process in our own biologically realistic 2-D model. Finally, we discuss the role of Bcd-encoded positional information in controlling the positioning and precision of developmental decisions.  相似文献   

6.
《Fly》2013,7(3):242-246
In a recent publication, we identified a novel F-box protein, encoded by fates-shifted (fsd), that plays a role in targeting Bcd for ubiquitination and degradation. Our analysis of mutant Drosophila embryos suggests that Bcd protein degradation is important for proper gradient formation and developmental fate specification. Here we describe further experiments that lead to an estimate of Bcd half-life, &lt;15 min, in embryos during the time of gradient formation. We use our findings to evaluate different models of Bcd gradient formation. With this new estimate, we simulate the Bcd gradient formation process in our own biologically realistic 2-D model. Finally, we discuss the role of Bcd-encoded positional information in controlling the positioning and precision of developmental decisions.  相似文献   

7.
A morphogen gradient is defined as a concentration field of a molecule that acts as a dose-dependent regulator of cell differentiation. One of the key questions in studies of morphogen gradients is whether they reach steady states on timescales relevant for developmental patterning. We propose a systematic approach for addressing this question and illustrate it by analyzing several models that account for diffusion and degradation of locally produced chemical signals.  相似文献   

8.
Pre-steady-state decoding of the Bicoid morphogen gradient   总被引:2,自引:1,他引:1       下载免费PDF全文
Morphogen gradients are established by the localized production and subsequent diffusion of signaling molecules. It is generally assumed that cell fates are induced only after morphogen profiles have reached their steady state. Yet, patterning processes during early development occur rapidly, and tissue patterning may precede the convergence of the gradient to its steady state. Here we consider the implications of pre-steady-state decoding of the Bicoid morphogen gradient for patterning of the anterior–posterior axis of the Drosophila embryo. Quantitative analysis of the shift in the expression domains of several Bicoid targets (gap genes) upon alteration of bcd dosage, as well as a temporal analysis of a reporter for Bicoid activity, suggest that a transient decoding mechanism is employed in this setting. We show that decoding the pre-steady-state morphogen profile can reduce patterning errors caused by fluctuations in the rate of morphogen production. This can explain the surprisingly small shifts in gap and pair-rule gene expression domains observed in response to alterations in bcd dosage.  相似文献   

9.

Background

Bicoid (Bcd) is a Drosophila morphogenetic protein responsible for patterning the anterior structures in embryos. Recent experimental studies have revealed important insights into the behavior of this morphogen gradient, making it necessary to develop a model that can recapitulate the biological features of the system, including its dynamic and scaling properties.

Methodology/Principal Findings

We present a biologically realistic 2-D model of the dynamics of the Bcd gradient in Drosophila embryos. This model is based on equilibrium binding of Bcd molecules to non-specific, low affinity DNA sites throughout the Drosophila genome. It considers both the diffusion media within which the Bcd gradient is formed and the dynamic and other relevant properties of bcd mRNA from which Bcd protein is produced. Our model recapitulates key features of the Bcd protein gradient observed experimentally, including its scaling properties and the stability of its nuclear concentrations during development. Our simulation model also allows us to evaluate the effects of other biological activities on Bcd gradient formation, including the dynamic redistribution of bcd mRNA in early embryos. Our simulation results suggest that, in our model, Bcd protein diffusion is important for the formation of an exponential gradient in embryos.

Conclusions/Significance

The 2-D model described in this report is a simple and versatile simulation procedure, providing a quantitative evaluation of the Bcd gradient system. Our results suggest an important role of Bcd binding to non-specific, low-affinity DNA sites in proper formation of the Bcd gradient in our model. They demonstrate that highly complex biological systems can be effectively modeled with relatively few parameters.  相似文献   

10.
The importance of morphogens is a central concept in developmental biology. Multiple-fate patterning and the robustness of the morphogen gradient are essential for embryo development. The ways by which morphogens diffuse from a local source to form long distance gradients can differ from one morphogen to the other, and for the same morphogen in different organs. This paper will study the mechanism by which morphogens diffuse through the aid of membrane-associated non-receptors and will investigate how the membrane-associated non-receptors help the morphogen to form long distance gradients and to achieve good robustness. Such a mechanism has been reported for some morphogens that are rapidly turned over. We will establish a set of reaction-diffusion equations to model the dynamical process of morphogen gradient formation. Under the assumption of rapid morphogen degradation, we discuss the existence, uniqueness, local stability, approximation solution, and the robustness of the steady-state gradient. The results in this paper show that when the morphogen is rapidly turned over, diffusion of the morphogen through membrane-associated non-receptors is a possible strategy to form a long distance multiple-fate gradient that is locally stable and is robust against the changes in morphogen synthesis rate.  相似文献   

11.
Morphogen gradients play a key role in multiple differentiation processes. Both the formation of the gradient and its interpretation by the receiving cells need to occur at high precision to ensure reproducible patterning. This need for quantitative precision is challenged by fluctuations in the environmental conditions and by variations in the genetic makeup of the developing embryos. We discuss mechanisms that buffer morphogen profiles against variations in gene dosage. Self-enhanced morphogen degradation and pre-steady-state decoding provide general means for buffering the morphogen profile against fluctuations in morphogen production rate. A more specific “shuttling” mechanism, which establishes a sharp and robust activation profile of a widely expressed morphogen, and enables the adjustment of morphogen profile with embryo size, is also described. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells. The integration theory and experiments are increasingly used, providing key insights into the system-level functioning of the developmental system.In order for a uniform field of cells to differentiate into a reproducible pattern of organs and tissues, cells need to receive information about their position within the field. During development, positional information is often conveyed by spatial gradients of morphogens (Wolpert 1989). In the presence of such gradients, cells are subject to different levels of morphogen, depending on their positions within the field, and activate, accordingly, one of several gene expression cassettes. The quantitative shape of the morphogen gradient is critical for patterning, with cell-fate boundaries established at specific concentration thresholds. Although these general features of morphogen-based patterning are universal, the range and form of the morphogen profile, and the pattern of induced target genes, vary significantly depending on the tissue setting and the signaling pathways used.The formation of a morphogen gradient is a dynamic process, influenced by the kinetics of morphogen production, diffusion, and degradation. These processes are tightly controlled through intricate networks of positive and negative feedback loops, which shape the gradient and enhance its reproducibility between individual embryos and developmental contexts. In the past three decades, many of the components comprising the morphogen signaling cascades have been identified and sorted into pathways, enabling one to start addressing seminal questions regarding their functionality: How is it that morphogen signaling is reproducible from one embryo to the next, despite fluctuations in the levels of signaling components, temperature differences, variations in size, or unequal distribution of components between daughter cells? Are there underlying mechanisms that assure a reproducible response? Are these mechanisms conserved across species, similar to the signaling pathways they control?In this review, we outline insights we gained by quantitatively analyzing the process of morphogen gradient formation. We focus on mechanisms that buffer morphogen profiles against fluctuations in gene dosage, and describe general means by which such buffering is enhanced. These mechanisms include self-enhanced morphogen degradation and pre-steady-state decoding. In addition, we describe a more specific “shuttling” mechanism that is used to generate a sharp and robust profile of a morphogen activity from a source that is broadly produced. We discuss the implication of the shuttling mechanism for the ability of embryos to adjust their pattern with size. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells.  相似文献   

12.
13.
A previously investigated basic model (System B) for the study of signaling morphogen gradient formation that allows for reversible binding of morphogens (aka ligands) with signaling receptors, degradation of bound morphogens and diffusion of unbound morphogens is extended to include the effects of membrane-bound non-signaling molecules (or non-receptors for short) such as proteoglycans that bind reversibly with the same morphogens and degrade them. Our main goal is to delineate the effects of the presence of non-receptors on the existence and properties of the steady-state concentration gradient of signaling ligand–receptor complexes. Stability of the steady-state morphogen gradients is established and the time to reach steady-state behavior after the onset of morphogen production will be analyzed. The theoretical findings offer explanations for observations reported in several previous experiments on Drosophila wing imaginal discs.  相似文献   

14.
《Fly》2013,7(3):210-214
Orchestration of spatial organization by signaling gradients - morphogen gradients - is a fundamental principle in animal development. Despite their importance in tissue patterning and growth, the exact mechanisms underlying the establishment and maintenance of morphogen gradients are poorly understood. Our recent work on BMP (bone morphogenetic protein) morphogen signaling during wing development identified a novel protein, Pentagone (Pent), as a critical regulator of morphogen activity. In the following, we discuss the properties of Pent and its role as a feed-back loop in morphogen gradient formation.  相似文献   

15.
16.
《Fly》2013,7(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their abilty to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imparative to the two central themes in gradient formation; active transport facilitating long-range signalling, and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane mediated processes of re-secretion, degradation, and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

17.

Background  

Patterning along the anterior-posterior (A-P) axis in Drosophila embryos is instructed by the morphogen gradient of Bicoid (Bcd). Despite extensive studies of this morphogen, how embryo geometry may affect gradient formation and target responses has not been investigated experimentally.  相似文献   

18.
《Fly》2013,7(3):118-120
Morphogen gradients provide unique positional information within a tissue. Cells that are sensitive to the concentration of the morphogen integrate this signal and develop an appropriately distinct cell fate. A morphogen gradient is usually generated by a restricted source and shaped by the speed of diffusion and stability of the signaling molecule. In addition, the availability of receptor and Heparan Sulfate Proteoglycans (HSPGs) help to shape the gradient. We have shown that over-expression of Dally-like protein (Dlp) causes an expansion of Gurken distribution and a loss of cell fates which are specified by high levels of epidermal growth factor receptor (Egfr) signaling. In this article, we discuss how D-Cbl mediated Egfr endocytosis and the levels of Dlp affect the shape of the Gurken gradient.  相似文献   

19.
Wang PY  Chang WL  Pai LM 《Fly》2008,2(3):118-120
Morphogen gradients provide unique positional information within a tissue. Cells that are sensitive to the concentration of the morphogen integrate this signal and develop an appropriately distinct cell fate. A morphogen gradient is usually generated by a restricted source and shaped by the speed of diffusion and stability of the signaling molecule. In addition, the availability of receptor and Heparan Sulfate Proteoglycans (HSPGs) help to shape the gradient. We have shown that overexpression of Dally-like protein (Dlp) causes an expansion of Gurken distribution and a loss of cell fates which are specified by high levels of epidermal growth factor receptor (Egfr) signaling. In this article, we discuss how D-Cbl mediated Egfr endocytosis and the levels of Dlp affect the shape of the Gurken gradient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号