首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrinsically disordered Phe-Gly nucleoporins (FG Nups) within nuclear pore complexes exert multivalent interactions with transport receptors (Karyopherins (Kaps)) that orchestrate nucleocytoplasmic transport. Current FG-centric views reason that selective Kap translocation is promoted by alterations in the barrier-like FG Nup conformations. However, the strong binding of Kaps with the FG Nups due to avidity contradicts rapid Kap translocation in vivo. Here, using surface plasmon resonance, we innovate a means to correlate in situ mechanistic (molecular occupancy and conformational changes) with equilibrium (binding affinity) and kinetic (multivalent binding kinetics) aspects of Karyopherinβ1 (Kapβ1) binding to four different FG Nups. A general feature of the FxFG domains of Nup214, Nup62, and Nup153 is their capacity to extend and accommodate large numbers of Kapβ1 molecules at physiological Kapβ1 concentrations. A notable exception is the GLFG domain of Nup98, which forms a partially penetrable cohesive layer. Interestingly, we find that a slowly exchanging Kapβ1 phase forms an integral constituent within the FG Nups that coexists with a fast phase, which dominates transport kinetics due to limited binding with the pre-occupied FG Nups at physiological Kapβ1 concentrations. Altogether, our data reveal an emergent Kap-centric barrier mechanism that may underlie mechanistic and kinetic control in the nuclear pore complex.  相似文献   

2.
The transport channel of nuclear pore complexes (NPCs) contains a high density of intrinsically disordered proteins that are rich in phenylalanine-glycine (FG)-repeat motifs (FG Nups). The FG Nups interact promiscuously with various nuclear transport receptors (NTRs), such as karyopherins (Kaps), that mediate the trafficking of nucleocytoplasmic cargoes while also generating a selectively permeable barrier against other macromolecules. Although the binding of NTRs to FG Nups increases molecular crowding in the NPC transport channel, it is unclear how this impacts FG Nup barrier function or the movement of other molecules, such as the Ran importer NTF2. Here, we use surface plasmon resonance to evaluate FG Nup conformation, binding equilibria, and interaction kinetics associated with the multivalent binding of NTF2 and karyopherinβ1 (Kapβ1) to Nsp1p molecular brushes. NTF2 and Kapβ1 show different long- and short-lived binding characteristics that emerge from varying degrees of molecular retention and FG repeat binding avidity within the Nsp1p brush. Physiological concentrations of NTF2 produce a collapse of Nsp1p brushes, whereas Kapβ1 binding generates brush extension. However, the presence of prebound Kapβ1 inhibits Nsp1p brush collapse during NTF2 binding, which is dominated by weak, short-lived interactions that derive from steric hindrance and diminished avidity with Nsp1p. This suggests that binding promiscuity confers kinetic advantages to NTF2 by expediting its facilitated diffusion and reinforces the proposal that Kapβ1 contributes to the integral barrier function of the NPC.  相似文献   

3.
Intrinsically disordered Phe-Gly nucleoporins (FG Nups) within nuclear pore complexes exert multivalent interactions with transport receptors (Karyopherins (Kaps)) that orchestrate nucleocytoplasmic transport. Current FG-centric views reason that selective Kap translocation is promoted by alterations in the barrier-like FG Nup conformations. However, the strong binding of Kaps with the FG Nups due to avidity contradicts rapid Kap translocation in vivo. Here, using surface plasmon resonance, we innovate a means to correlate in situ mechanistic (molecular occupancy and conformational changes) with equilibrium (binding affinity) and kinetic (multivalent binding kinetics) aspects of Karyopherinβ1 (Kapβ1) binding to four different FG Nups. A general feature of the FxFG domains of Nup214, Nup62, and Nup153 is their capacity to extend and accommodate large numbers of Kapβ1 molecules at physiological Kapβ1 concentrations. A notable exception is the GLFG domain of Nup98, which forms a partially penetrable cohesive layer. Interestingly, we find that a slowly exchanging Kapβ1 phase forms an integral constituent within the FG Nups that coexists with a fast phase, which dominates transport kinetics due to limited binding with the pre-occupied FG Nups at physiological Kapβ1 concentrations. Altogether, our data reveal an emergent Kap-centric barrier mechanism that may underlie mechanistic and kinetic control in the nuclear pore complex.  相似文献   

4.
Bidirectional transport of molecules between nucleus and cytoplasm through the nuclear pore complexes (NPCs) spanning the nuclear envelope plays a fundamental role in cell function and metabolism. Nuclear import of macromolecules is a two-step process involving initial recognition of targeting signals, docking to the pore and energy-driven translocation. ATP depletion inhibits the translocation step. The mechanism of translocation itself and the conformational changes of the NPC components that occur during macromolecular transport, are still unclear. The present study investigates the effect of ATP on nuclear pore conformation in isolated nuclear envelopes from Xenopus laevis oocytes using the atomic force microscope. All experiments were conducted in a saline solution mimicking the cytosol using unfixed nuclear envelopes. ATP (1 mm) was added during the scanning procedure and the resultant conformational changes of the NPCs were directly monitored. Images of the same nuclear pores recorded before and during ATP exposure revealed dramatic conformational changes of NPCs subsequent to the addition of ATP. The height of the pores protruding from the cytoplasmic surface of the nuclear envelope visibly increased while the diameter of the pore opening decreased. The observed changes occurred within minutes and were transient. The slow-hydrolyzing ATP analogue, ATP-γ-S, in equimolar concentrations did not exert any effects. The ATP-induced shape change could represent a nuclear pore ``contraction.' Received: 10 February 1997/Revised: 10 February 1998  相似文献   

5.
Nuclear pore complexes (NPCs) mediate cargo traffic between the nucleus and the cytoplasm of eukaryotic cells. Nuclear transport receptors (NTRs) carry cargos through NPCs by transiently binding to phenylalanine‐glycine (FG) repeats on intrinsically disordered polypeptides decorating the NPCs. Major impediments to understand the transport mechanism are the thousands of FG binding sites on each NPC, whose spatial distribution is unknown, and multiple binding sites per NTR, which leads to multivalent interactions. Using single molecule fluorescence microscopy, we show that multiple NTR molecules are required for efficient transport of a large cargo, while a single NTR promotes binding to the NPC but not transport. Particle trajectories and theoretical modelling reveal a crucial role for multivalent NTR interactions with the FG network and indicate a non‐uniform FG repeat distribution. A quantitative model is developed wherein the cytoplasmic side of the pore is characterized by a low effective concentration of free FG repeats and a weak FG‐NTR affinity, and the centrally located dense permeability barrier is overcome by multivalent interactions, which provide the affinity necessary to permeate the barrier.  相似文献   

6.
Nuclear pore complexes (NPCs) mediate all transport between the cytosol and the nucleus and therefore take centre stage in physiology. While transport through NPCs has been extensively investigated little is known about their structural and barley anything about their mechanical flexibility. Structural and mechanical flexibility of NPCs, however, are presumably of key importance. Like the cell and the cell nucleus, NPCs themselves are regularly exposed to physiological mechanical forces. Besides, NPCs reveal striking transport properties which are likely to require fairly high structural flexibility. The NPC transports up to 1,000 molecules per second through a physically 9 nm wide channel which repeatedly opens to accommodate macromolecules significantly larger than its physical diameter. We hypothesised that NPCs possess remarkable structural and mechanical stability. Here, we tested this hypothesis at the single NPC level using the nano‐imaging and probing approach atomic force microscopy (AFM). AFM presents the NPC as a highly flexible structure. The NPC channel dilates by striking 35% on exposure to trans‐cyclohexane‐1,2‐diol (TCHD), which is known to transiently collapse the hydrophobic phase in the NPC channel like receptor–cargo complexes do in transit. It constricts again to its initial size after TCHD removal. AFM‐based nano‐indentation measurements show that the 50 nm long NPC basket can astonishingly be squeezed completely into the NPC channel on exposure to incremental mechanical loads but recovers its original vertical position within the nuclear envelope plane when relieved. We conclude that the NPC possesses exceptional structural and mechanical flexibility which is important to fulfilling its functions. J. Cell. Physiol. 226: 675–682, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Macromolecular transport across the nuclear envelope depends on facilitated diffusion through nuclear pore complexes (NPCs). The interior of NPCs contains a permeability barrier made of phenylalanine-glycine (FG) repeat domains that selectively facilitates the permeation of cargoes bound to nuclear transport receptors (NTRs). FG-repeat domains in NPCs are a major site of O-linked N-acetylglucosamine (O-GlcNAc) modification, but the functional role of this modification in nucleocytoplasmic transport is unclear. We developed high-throughput assays based on optogenetic probes to quantify the kinetics of nuclear import and export in living human cells. We found that increasing O-GlcNAc modification of the NPC accelerated NTR-facilitated transport of proteins in both directions, and decreasing modification slowed transport. Superresolution imaging revealed strong enrichment of O-GlcNAc at the FG-repeat barrier. O-GlcNAc modification also accelerated passive permeation of a small, inert protein through NPCs. We conclude that O-GlcNAc modification accelerates nucleocytoplasmic transport by enhancing the nonspecific permeability of the FG-repeat barrier, perhaps by steric inhibition of interactions between FG repeats.  相似文献   

8.
Molecular traffic between the cytoplasm and the nucleoplasm of eukaryotic cells is mediated by nuclear pore complexes (NPCs). Hundreds, if not thousands, of molecules interact with and transit through each NPC every second. The pore is blocked by a permeability barrier, which consists of a network of intrinsically unfolded polypeptides containing thousands of phenylalanine-glycine (FG) repeat motifs. This FG-network rejects larger molecules and admits smaller molecules or cargos bound to nuclear transport receptors (NTRs). For a cargo transport complex, minimally consisting of a cargo molecule plus an NTR, access to the permeability barrier is provided by interactions between the NTR and the FG repeat motifs. Numerous models have been postulated to explain the controlled accessibility and the transport characteristics of the FG-network, but the amorphous, flexible nature of this structure has hindered characterization. A relatively recent development is the ability to monitor the real-time movement of single molecules through individual NPCs via single molecule fluorescence (SMF) microscopy. A major advantage of this approach is that it can be used to continuously monitor a series of specific molecular interactions in an active pore with millisecond time resolution, which therefore allows one to distinguish between kinetic and thermodynamic control. Novel insights and prospects for the future are outlined in this review. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.  相似文献   

9.
The NPC is the portal for the exchange of proteins, mRNA, and ions between nucleus and cytoplasm. Many small molecules (<10 kDa) permeate the nucleus by simple diffusion through the pore, but molecules larger than 70 kDa require ATP and a nuclear localization sequence for their transport. In isolated Xenopus oocyte nuclei, diffusion of intermediate-sized molecules appears to be regulated by the NPC, dependent upon [Ca2+] in the nuclear envelope. We have applied real-time imaging and fluorescence recovery after photobleaching to examine the nuclear pore permeability of 27-kDa EGFP in single intact cells. We found that EGFP diffused bidirectionally via the NPC across the nuclear envelope. Although diffusion is slowed ~100-fold at the nuclear envelope boundary compared to diffusion within the nucleus or cytoplasm, this delay is expected for the reduced cross-sectional area of the NPCs. We found no evidence for significant nuclear pore gating or block of EGFP diffusion by depletion of perinuclear Ca2+ stores, as assayed by a nuclear cisterna-targeted Ca2+ indicator. We also found that EGFP exchange was not altered significantly during the cell cycle.  相似文献   

10.

Background  

Nuclear pore complexes (NPCs) are essential for facilitated, directional nuclear transport; however, the mechanism by which ~30 different nucleoporins (nups) are assembled into NPCs is unknown. We combined a genetic strategy in Saccharomyces cerevisiae with Green Fluorescence Protein (GFP) technology to identify mutants in NPC structure, assembly, and localization. To identify such mutants, a bank of temperature sensitive strains was generated and examined by fluorescence microscopy for mislocalization of GFP-tagged nups at the non-permissive temperature.  相似文献   

11.
Nuclear pore complexes (NPCs) are multiprotein channels that bridge the nucleus with the cytoplasm and regulate all nucleo‐cytoplasmic traffic. NPCs are built by the repetition of ~30 different proteins known as nucleoporins (Nups). Accumulating evidence has revealed a diversity in NPC composition that is critical for cell‐specific functionality and fate determination. A new report by Hazawa et al 1 now identifies the central transport channel nucleoporin Nup62 as a novel regulator of cell proliferation and differentiation in squamous cell carcinoma (SCC), via modulation of p63 nucleo‐cytoplasmic transport. These findings provide further evidence on how alterations in NPC composition might be utilized to determine cell fate.  相似文献   

12.
Nuclear pore complexes (NPCs) mediate the active transport of large substrates and allow the passive diffusion of small molecules into the nucleus of eukaryotic cells. The EMBO Workshop on the Mechanisms of Nuclear Transport focused on NPCs and on the soluble nucleocytoplasmic transport machinery. This meeting, organized by Valérie Doye (Institut Curie, Paris) and Ed Hurt (University of Heidelberg), was held within view of Mount Etna at Taormina, Sicily (November 1-5, 2003). Presentations emphasized the dynamic properties of the nuclear trafficking machinery, and demonstrated the continuity of nuclear transport with processes in the nucleus and cytoplasm.  相似文献   

13.
In Vivo Dynamics of Nuclear Pore Complexes in Yeast   总被引:7,自引:1,他引:6       下载免费PDF全文
While much is known about the role of nuclear pore complexes (NPCs) in nucleocytoplasmic transport, the mechanism of NPC assembly into pores formed through the double lipid bilayer of the nuclear envelope is not well defined. To investigate the dynamics of NPCs, we developed a live-cell assay in the yeast Saccharomyces cerevisiae. The nucleoporin Nup49p was fused to the green fluorescent protein (GFP) of Aequorea victoria and expressed in nup49 null haploid yeast cells. When the GFP–Nup49p donor cell was mated with a recipient cell harboring only unlabeled Nup49p, the nuclei fused as a consequence of the normal mating process. By monitoring the distribution of the GFP–Nup49p, we could assess whether NPCs were able to move from the donor section of the nuclear envelope to that of the recipient nucleus. We observed that fluorescent NPCs moved and encircled the entire nucleus within 25 min after fusion. When assays were done in mutant kar1-1 strains, where nuclear fusion does not occur, GFP–Nup49p appearance in the recipient nucleus occurred at a very slow rate, presumably due to new NPC biogenesis or to exchange of GFP– Nup49p into existing recipient NPCs. Interestingly, in a number of existing mutant strains, NPCs are clustered together at permissive growth temperatures. This has been explained with two different hypotheses: by movement of NPCs through the double nuclear membranes with subsequent clustering at a central location; or, alternatively, by assembly of all NPCs at a central location (such as the spindle pole body) with NPCs in mutant cells unable to move away from this point. Using the GFP–Nup49p system with a mutant in the NPCassociated factor Gle2p that exhibits formation of NPC clusters only at 37°C, it was possible to distinguish between these two models for NPC dynamics. GFP– Nup49p-labeled NPCs, assembled at 23°C, moved into clusters when the cells were shifted to growth at 37°C. These results indicate that NPCs can move through the double nuclear membranes and, moreover, can do so to form NPC clusters in mutant strains. Such clusters may result by releasing NPCs from a nuclear tether, or by disappearance of a protein that normally prevents pore aggregation. This system represents a novel approach for identifying regulators of NPC assembly and movement in the future.  相似文献   

14.
Nuclear‐pore complexes (NPCs) are large protein channels that span the nuclear envelope (NE), which is a double membrane that encloses the nuclear genome of eukaryotes. Each of the typically 2,000–4,000 pores in the NE of vertebrate cells is composed of multiple copies of 30 different proteins known as nucleoporins. The evolutionarily conserved NPC proteins have the well‐characterized function of mediating the transport of molecules between the nucleoplasm and the cytoplasm. Mutations in nucleoporins are often linked to specific developmental defects and disease, and the resulting phenotypes are usually interpreted as the consequences of perturbed nuclear transport activity. However, recent evidence suggests that NPCs have additional functions in chromatin organization and gene regulation, some of which might be independent of nuclear transport. Here, we review the transport‐dependent and transport‐independent roles of NPCs in the regulation of nuclear function and gene expression.  相似文献   

15.
Kinetic analysis of translocation through nuclear pore complexes   总被引:32,自引:0,他引:32  
The mechanism of facilitated translocation through nuclear pore complexes (NPCs) is only poorly understood. Here, we present a kinetic analysis of the process using various model substrates. We find that the translocation capacity of NPCs is unexpectedly high, with a single NPC allowing a mass flow of nearly 100 MDa/s and rates in the order of 10(3) translocation events per second. Our data further indicate that high affinity interactions between the translocation substrate and NPC components are dispensable for translocation. We propose a 'selective phase model' that could explain how NPCs function as a permeability barrier for inert molecules and yet become selectively permeable for nuclear transport receptors and receptor-cargo complexes.  相似文献   

16.
Changes in nuclear pore complex (NPC) densities, NPCs/nucleus and NPCs/μm3, are described using freeze-fractured Brassica napus microspores and pollen in vivo and in vitro. Early stages of microspore- and pollen-derived embryogenic cells were also analysed. The results of in vivo and in vitro pollen development indicate an increase in activity of the vegetative nucleus during maturation of the pollen. At the onset of microspore and pollen culture, NPC density decreased from 15 NPCs/μm2 at the stage of isolation to 9 NPCs/μm2, under both embryogenic and non-embryogenic conditions. This implies that the drop in NPC density might be a result of culturing the microspores and pollen rather than an indication for microspore and pollen embryogenesis in Brassica napus. However, after 1 day in culture under embryogenic conditions, the NPC density increased again and stabilised around 13 NPCs/μm2, whereas under non-embryogenic conditions the NPC density remained about 9 NPCs/μm2. This low density of 9 NPCs/μm2 was also found in the nuclei of sperm cells, in contrast to the 19 NPCs/μm2 found in the vegetative nucleus. It means that, although both the vegetative and sperm nuclei are believed to be metabolically rather inactive in mature pollen, the NPC density of vegetative nucleus is twice as high as the NPC density of the sperm nuclei. In a few cases, embryos formed suspensor-like structures with a NPC density of 9 NPCs/μm2, indicating a lower nucleocytoplasmic exchange of the nuclei of the suspensor cells than with the nuclei in the embryo proper. In addition, observations on NPCs and other organelles, obtained by high resolution cryo-scanning microscopy, are presented. Received: 29 December 1999 / Revision accepted: 3 March 2000  相似文献   

17.
All molecular traffic between nucleus and cytoplasm occurs via the nuclear pore complex (NPC) within the nuclear envelope. In this study we analyzed the interactions of the nuclear transport receptors kapα2, kapβ1, kapβ1ΔN44, and kapβ2, and the model transport substrate, BSA-NLS, with NPCs to determine binding sites and kinetics using single-molecule microscopy in living cells. Recombinant transport receptors and BSA-NLS were fluorescently labeled by AlexaFluor 488, and microinjected into the cytoplasm of living HeLa cells expressing POM121-GFP as a nuclear pore marker. After bleaching the dominant GFP fluorescence the interactions of the microinjected molecules could be studied using video microscopy with a time resolution of 5 ms, achieving a colocalization precision of 30 nm. These measurements allowed defining the interaction sites with the NPCs with an unprecedented precision, and the comparison of the interaction kinetics with previous in vitro measurements revealed new insights into the translocation mechanism.  相似文献   

18.
Dynamic nuclear pore complexes: life on the edge   总被引:37,自引:0,他引:37  
Tran EJ  Wente SR 《Cell》2006,125(6):1041-1053
The exchange of molecules between the nucleus and cytoplasm is mediated through nuclear pore complexes (NPCs) embedded in the nuclear envelope. Altering the interactions between transport receptors and their cargo has been shown to be a major regulatory mechanism to control traffic through NPCs. New evidence now suggests that NPC proteins play active roles in translocation, and that transport is also controlled by dynamic changes in NPC composition and architecture. This view of ever-changing NPCs necessitates the re-evaluation of current models of nuclear transport and how this process is regulated.  相似文献   

19.
Nuclear pore complexes (NPCs) are highly selective filters that control the exchange of material between nucleus and cytoplasm. The principles that govern selective filtering by NPCs are not fully understood. Previous studies find that cellular proteins capable of fast translocation through NPCs (transport receptors) are characterized by a high proportion of hydrophobic surface regions. Our analysis finds that transport receptors and their complexes are also highly negatively charged. Moreover, NPC components that constitute the permeability barrier are positively charged. We estimate that electrostatic interactions between a transport receptor and the NPC result in an energy gain of several k B T, which would enable significantly increased translocation rates of transport receptors relative to other cellular proteins. We suggest that negative charge is an essential criterion for selective passage through the NPC.  相似文献   

20.
Multiple mechanisms are in place to regulate adequate synthesis of proteins, ranging from ways to ensure sequence fidelity, polypeptide folding and protein modification, to control of amounts and subcellular localization of the molecules. Some of these mechanisms act at the level of mRNA export and mRNA targeting. mRNA nuclear export consists of three coupled consecutive steps: (1) the packaging into messenger ribonucleoprotein (mRNP); (2) the transport through the nuclear pore complexes (NPCs); and (3) the directional release into the cytoplasm (for a review see refs. 1-2). The subsequent targeting of mRNA to particular subcellular locations is common in asymmetric cell division in many eukaryotes (for a review see refs. 3-5) and ensures that proteins are produced at the desired place. Recent studies in Saccharomyces cerevisiae suggest that Karyopherin Kap104p plays a role not only in mRNA export but also in bud-localized protein synthesis.6 In this report, we reflect on the possible mechanisms by which Kap104p links these events and hypothesize on a possible function of the localized protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号