首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyclonal antibody bound Sepharose 4B support has been exploited for the immobilization of bitter gourd peroxidase directly from ammonium sulphate precipitated proteins. Immunoaffinity immobilized bitter gourd peroxidase exhibited high yield of immobilization. IgG-Sepharose 4B bound bitter gourd peroxidase showed a higher stability against heat, chaotropic agents (urea and guanidinium chloride), detergents (cetyl trimethyl ammonium bromide and Surf Excel), proteolytic enzyme (trypsin) and water-miscible organic solvents (propanol, THF and dioxane). The activity of immobilized bitter gourd peroxidase was significantly enhanced in the presence of cetyl trimethyl ammonium bromide and after treatment with trypsin as compared to soluble enzyme.  相似文献   

2.
Concanavalin A (Con A) was spontaneously adsorbed on polymyxin B surface. This peptide-lectin interaction was strong, K(D)=1.9 x 10(-10), based predominantly on creation of hydrophobic bonds, and was completely reversible. Concanavalin A on polymyxin B (PmB) retained higher binding capacity for yeast mannan, compared with covalently immobilized lectin. Kinetics of mannan-concanavalin A interaction were significantly different in dependence on type of concanavalin A immobilization.  相似文献   

3.
Calcium alginate–starch hybrid gel was employed as an enzyme carrier both for surface immobilization and entrapment of bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase retained 52% of the initial activity while surface immobilized and glutaraldehyde crosslinked enzyme showed 63% activity. A comparative stability of both forms of immobilized bitter gourd peroxidase was investigated against pH, temperature and chaotropic agent; like urea, heavy metals, water-miscible organic solvents, detergent and inhibitors. Entrapped peroxidase was significantly more stable as compared to surface immobilized form of enzyme. The pH and temperature-optima for both immobilized preparations were the same as for soluble bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase showed 75% of the initial activity while the surface immobilized and crosslinked bitter gourd peroxidase retained 69% of the original activity after its seventh repeated use.  相似文献   

4.
Cellulase produced by fungus Trichoderma viride was immobilized on agarose beads (Sepharose 4B) activated by cyanogen bromide and also on activated agarose beads that contained spacer arm (activated CH-Sepharose 4B and Affi-Gel 15). The CMCase activity retained by immobilized cellulase on activated Sepharose containing the spacer tended to be higher than that immobilized without spacer, although the extent of protein immobilization was lower. Also, the higher substrate specificity for cellulase immobilized on beads with spacer was obtained for cellobiose, acid-swollen cellulose, or cellulose powder. The hydrolysis product from their substrates was mainly glucose.  相似文献   

5.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

6.
Several new types of carrier and technology have been implemented in the recent past to improve traditional enzyme immobilization which aims to enhance enzyme loading, activity and stability in order to decrease the cost of enzyme in industrial processes. Thus, the present study aimed to work out a simple and high yield procedure for the immobilization of Kluyveromyces lactis β galactosidase on a bioaffinity support, concanavalin A layered Al2O3 nanoparticles (Con A layered Al2O3-NPs). Thermogravimetric analysis of bioaffinity support revealed 6% loss in weight at 600 °C whereas its thermal decomposition was observed at 350 °C by differential thermal analysis. No significant change was noticed in the band intensity of pUC19 plasmid upon its treatment with Con A layered Al2O3-NPs. Comet assay further exhibited negligible change in tail length of comet after treating the lymphocytes by bioaffinity matrix. Atomic force microscopy revealed large surface area of Con A layered Al2O3-NPs for binding higher amounts of enzyme. Moreover, Fourier transform-infrared spectroscopy confirmed binding of β galactosidase on bioaffinity support by exhibiting broadening in peaks at 3220.61 cm−1 and 3447.27 cm−1. Soluble and immobilized β galactosidase showed same pH-optima at pH 7.0. However, immobilized enzyme exhibited enhanced pH stability and broad spectrum temperature optimum than soluble β galactosidase. Immobilized β galactosidase was found to be highly stable against product inhibition by galactose and retained 85% activity after its sixth repeated use.  相似文献   

7.
The matter of this work was to evaluate possibilities of biospecific immobilization of synthetic mannan-penicillin G acylase neoglycoconjugate on Concanavalin A support. The conjugate containing 37% (w/w) of yeast mannan was prepared. Significant biospecific interaction of this neoglycoenzyme with Con A was confirmed by precipitation method. The biospecific sorption of conjugate was investigated using Concanavalin A-triazine bead celluloses MT-100 with different content of Con A (from 1.4 to 9.8 mgCon A/gwet support). The results obtained under optimal conditions were compared with those from covalent immobilization of PGA. The sorbent capacity was observed higher for covalent binding of enzyme. On the other hand, the biospecifically immobilized neoglycoenzyme retained a greater amount of initial activity. The maximum amount of 6.6mgimmobilizedneoglycoenzyme/gwet Con A-sorbent (18.1 U/g) was achieved. The amount as well as activity of immobilized mannan-penicillin G acylase was increased by its two multiple layering on surface of sorbent (10.1mg, respectively, 23.5 U/gwet sorbent). Determined storage and operational (using flow calorimetric method) stabilities of biospecifically immobilized enzyme, were similar, possibly somewhat higher that those of covalent bound penicillin G acylase.  相似文献   

8.
Various activated supports (cyanogen bromide, glutaraldehyde, epoxy-chelates, primary amino) were evaluated for the immobilization of IgG anti-horseradish peroxidase. Cyanogen bromide and glutaraldehyde supports greatly reduced the recognition capacity of the antigen, probably due to the incorrect orientation of the antibody on the support. Hetero-functional epoxy-chelate and immobilization by the sugar chain on primary amino groups had little effect on high recognition of the antigen (near to the theoretically expected value). However, the immobilization by the sugar chain resulted in a higher adsorption rate of horseradish peroxidase, possibly due to a favourable orientation on a flexible spacer arm). Antibodies immobilized on aminated surfaces showed two major drawbacks. Firstly, the biological activity of the immobilized antibody sharply decreased over several days when stored at low ionic strength, although this effect could be partially reversed by incubation at high ionic strength. Secondly, a high level of non-specific proteins adsorption on the support surface was observed. Both problems could be successfully resolved by controlling the coating of the support with aldehyde-aspartic-dextran. We propose that the loss of biological activity was related to the ionic adsorption of the immobilized antibody on the support surface, leading to a blocking of the recognition areas. This optimized protocol was applied to the immobilization of IgG anti-horseradish peroxidase from rabbit on magnetic nano-particles. A 10 microg preparation of nano-particles was able to capture more than 75% of the 0.1 microgram of recombinant horseradish peroxidase present in 10 L of crude protein extract (1g/L) from Escherichia coli.  相似文献   

9.
Polyclonal antibodies suitable for the oriented immobilization of chymotrypsin we prepared by chromatography on a bioaffinity matrix which had the enzyme immobilized through its active site to antilysin, covalently linked to bead cellulose. After periodate oxidation of their carbohydrate moieties, the isolated antibodies were coupled to a hydrazide derivative of bead cellulose. The periodate oxidation step, which led to greater efficiency and stability of the immunosorbent, had no deleterious effect on antibody activity as assessed by ELISA. Addition of chymotrypsin to the immunosorbent yielded an enzymically active bioaffinity matrix with the optimum molar enzyme/antibody ratio of 2.  相似文献   

10.
Human fibroblast interferon binds to a concanavalin A-agarose (Con A-Sepharose) equilibrated with methyl alpha-D-mannopyranoside, or levan; in contrast, it is only partially retarded on a similar column equilibrated with ethylene glycol. Interferon does not bind, however, to a lectin column equilibrated with both methyl alpha-D-mannopyranoside and ethylene glycol. Thus, a hydrophobic interaction between fibroblast interferon and the immobilized lectin seems to account for a large portion of the binding forces involved. Other hydrophobic solutes, such as dioxane, 1, 2-propanediol, and tetraethylammonium chloride, were found equally or more efficient than ethylene glycol in displacing interferon from the lectin column. The elution pattern of interferon from a concanavalin A-agarose (Con A-Sepharose) column, at a constant ehtylene glycol concentration and with an increasing mannoside concentration, reveals the existence of four distinct interferon components. The selective adsorption to and elution from a concanavalin A-agarose (Con A-Sepharose) column resulted in about a 3000-fold purification of human fibroblast interferon and complete recovery of activity. The specific activity of the partially purified interferon preparation is about 5 X 10(7) units per mg of protein. The chromatographic behavior of human leukocyte interferon is remarkable in that it does not bind to concanavalin A-agarose at all indicating the absence of carbohydrate moieties recognizable by the lectin, or if present, their masked status. When concanavalin A was coupled to an agarose matrix (cyanogen bromide activated) at pH 8.0 and 6.0 human fibroblast interferon bound to both lectin-agarose adsorbents and could be recovered with methyl alpha-D-mannopyranoside. Concanavalin A, immobilized directly on agarose matrix at pH 8.0 and 6.0, thus displays only carbohydrate recognition toward interferon. By contrast, unless a hydrophobic solute was included in the solvent containing methyl mannoside, human fibroblast interferon could not be recovered from concanavalin A-agarose coupled at pH 9.0. When concanavalin A was immobilized via molecular arms, in tetrameric as well as dimeric forms, the binding of interferon again occurred exclusively through carbohydrate recognition. Thus, the hydrophobic interaction can be eliminated by appropriate immobilization of the lectin, and then adsorbed glycoproteins, as exemplified here by interferon, can be recovered readily with methyl mannoside alone.  相似文献   

11.
Cellulase has been immobilized on hybrid concanavalin A (Con A)-layered calcium alginate–starch beads. Immobilized cellulase retained about 82% of its activity. Con A was extracted from jack bean and the obtained crude protein was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The immobilized beads showed high mechanical and storage stability; immobilized cellulase retained 100% and 85% activity at 4°C and 30°C, respectively, over one month. The immobilized cellulase retained about 70% of its activity after five cycles of use. The immobilized cellulase retained 70% activity after 120-min exposure to 60°C, whereas the soluble form only retained about 20%, showing that immobilization improved thermal stability. Surface morphology and elemental analysis of immobilized cellulase were examined using scanning electron microscope equipped with energy-dispersive X-ray. Based on the enzyme stability and reuse, this method of immobilization is both convenient and cheap.  相似文献   

12.
The mode of binding of 125I-labelled concanavalin A and succinyl-concanavalin A to rat thymocytes at 4 degrees C was investigated. Simultaneously, the free binding sites of the cell-bound lectin molecules were quantified by horseradish peroxidase binding. Concanavalin A showed cooperative binding while succinyl-concanavalin A did not. The number of molecules of concanavalin A bound to the cell surface when it was saturated was twice the number of molecules of succinyl-concanavalin A. We interpret these results as showing that the binding of native concanavalin A to thymocytes at 4 degrees C brings about a cooperative modification of the membrane which leads to appearance of new receptors. Divalent succinyl-concanavalin A has no such effect. Horseradish peroxidase binding to cell-bound lectin was shown to be related to the immobilization of membrane receptors; the more they are immobilized, the more receptor-associated lectin can bind horseradish peroxidase. This allowed us to establish that post-binding events, which we called micro-redistribution, occurred at 4 degrees C when either concanavalin A or succinyl-concanavalin A binds to cells. A cooperative restriction of the micromobility of cell receptors is produced by increasing concentrations of concanavalin A. Succinyl-concanavalin A does not restrict cell receptor mobility at any concentration tested. The results are discussed in terms of cell stimulation and cell agglutination.  相似文献   

13.
Immobilization of glycoenzymes through carbohydrate side chains.   总被引:1,自引:0,他引:1  
Glucoamylase, peroxidase, glucose oxidase, and carboxypeptidase Y were covalently bound to water-insoluble supports through their carbohydrate side chains. Two approaches were used. First, the carbohydrate portions of the enzymes were oxidized with periodate to generate aldehyde groups. Treatment with amines (ethylenediamine or glycyltyrosine) and borohydride provided groups through which the protein could be immobilized. Ethylenediamine was attached to glucoamylase, peroxidase, glucose oxidase, and carboxypeptidase Y to the extent of 24, 20, 30, and 15 mol/mol of enzyme, respectively. These derivatives were coupled to an aminocaproate adduct of CL-Sepharose via an N-hydroxysuccinimide ester or to CNBr-activated Sepharose. Coupling yields were in the range of 37–50%. Retained activities of the bound aminoalkyl-enzymes were 41% (glucoamylase), 79% (peroxidase), 71% (glucose oxidase), 83% (carboxypeptidase Y). A glycyltyrosine derivative of carboxypeptidase Y was bound to diazotized arylamine-glass. Coupling yield was 42% and retained esterase activity was 84%. In the second approach, the enzyme was adsorbed to immobilized concanavalin A and the complex was crosslinked. Adsorption of carboxypeptidase Y on immobilized concanavalin A followed by crosslinking with glutaraldehyde was also effective. The bound enzyme retained 96% of the native esterase activity and showed very good operational stability.  相似文献   

14.
Aldehyde oxidase (E.C. 1.2.3.1) was isolated from rabbit liver and two potential bioaffinity ligands, i.e., 3-aminocarbonyl-1-benzyl-6-methylpyridinium bromide and 3-aminocarbonyl-1-benzyl-4,6-dimethylpyridinium chloride, were tested for their applicability in a purification procedure for this enzyme. Various supports and different coupling methods were investigated for the immobilization of aldehyde oxidase. Adsorption to n-hexyl- and n-octylamine-substituted Sepharose 4B and DEAE Sepharose 6B gave the best retention of aldehyde oxidase activity. The storage stability of free enzyme and enzyme immobilized to n-octylamine-substituted Sepharose 4B was studied in several buffers at pH 7.8 and 9.0. This showed that the stability of immobilized enzyme was much less than that of free enzyme. The apparent operational stability of the immobilized enzyme preparation, however, improved substantially compared to soluble enzyme, although the corresponding product yield is still very poor. Coimmobilization of catalase and/or superoxide dismutase provided no significant increase of the apparent operational stability and product yield. A positive effect on both parameters was found for aldehyde oxidase-n-alkylamine Sepharose 4B preparations by increasing the amount of enzyme adsorbed per unit weight of support, whereas the productivity of these preparations remained about constant.  相似文献   

15.
Preparation of Concanavalin A-adsorbents by immobilization on Sepharose activated with 1-cyano-4-(dimethylamino)-pyridinium tetrafluoroborate (CDAP-reagent) is reported. High immobilization yields of lectin (above 90%) were attained using an optimized CDAP-activating protocol. The effect of ligand density on the performance of the adsorbent for specific binding of glycoproteins was studied using horseradish peroxidase (HRP) as a model. Adsorption yields of pure HRP exceeding 90% were obtained with Con A-derivatives containing not < 20 mg of immobilized Con A/ml of packed gel. With lectin content of 2 mg/(ml of packed gel), only 20% of HRP was adsorbed. Purification of peroxidase from horseradish roots extract was successfully accomplished on Con A-Sepharose with high Con A content.  相似文献   

16.
Controlled layer-by-layer immobilization of horseradish peroxidase.   总被引:2,自引:0,他引:2  
Horseradish peroxidase (HRP) was biotinylated with biotinamidocaproate N-hydroxysuccinimide ester (BcapNHS) in a controlled manner to obtain biotinylated horseradish peroxidase (Bcap-HRP) with two biotin moieties per enzyme molecule. Avidin-mediated immobilization of HRP was achieved by first coupling avidin on carboxy-derivatized polystyrene beads using a carbodiimide, followed by the attachment of the disubstituted biotinylated horseradish peroxidase from one of the two biotin moieties through the avidin-biotin interaction (controlled immobilization). Another layer of avidin can be attached to the second biotin on Bcap-HRP, which can serve as a protein linker with additional Bcap-HRP, leading to a layer-by-layer protein assembly of the enzyme. Horseradish peroxidase was also immobilized directly on carboxy-derivatized polystyrene beads by carbodiimide chemistry (conventional method). The reaction kinetics of the native horseradish peroxidase, immobilized horseradish peroxidase (conventional method), controlled immobilized biotinylated horseradish peroxidase on avidin-coated beads, and biotinylated horseradish peroxidase crosslinked to avidin-coated polystyrene beads were all compared. It was observed that in solution the biotinylated horseradish peroxidase retained 81% of the unconjugated enzyme's activity. Also, in solution, horseradish peroxidase and Bcap-HRP were inhibited by high concentrations of the substrate hydrogen peroxide. The controlled immobilized horseradish peroxidase could tolerate much higher concentrations of hydrogen peroxide and, thus, it demonstrates reduced substrate inhibition. Because of this, the activity of controlled immobilized horseradish peroxidase was higher than the activity of Bcap-HRP in solution. It is shown that a layer-by-layer assembly of the immobilized enzyme yields HRP of higher activity per unit surface area of the immobilization support compared to conventionally immobilized enzyme.  相似文献   

17.
Insoluble concanavalin A-beta galactosidase complex was obtained by using jack bean extract and this complex was crosslinked with glutaraldehyde, in order to maintain the integrity of complex in the presence of its substrate or products. Concanavalin A-beta galactosidase complex retained 92% of the initial enzyme activity whereas crosslinked complex showed 88% activity. Entrapment of concanavalin A-beta galactosidase complex into calcium alginate beads provided suitability to use this preparation in reactors. Temperature- and pH-optima of the various immobilized beta galactosidase preparations were the same as its soluble counterpart. Entrapped crosslinked concanavalin A-beta galactosidase complex retained more than 50% activity after 1h exposure with 4.0 M urea at room temperature. Moreover, entrapped crosslinked concanavalin A-beta galactosidase complex retained 81 and 62% of the original enzymatic activity in the presence of 5% calcium chloride and 5% galactose, respectively. Entrapped crosslinked concanavalin A-beta galactosidase complex preparation was more superior in the continuous hydrolysis of lactose in a batch process as compared to the other entrapped preparations. This entrapped crosslinked concanavalin A-beta galactosidase complex retained 95% activity after seventh repeated use and 93% of its original activity even after 2 months storage at 4 degrees C.  相似文献   

18.
Summary A support based on pyrogeneous silicon dioxide of particle size 0.01 to 0.1/um, modified by 3-(amino)propyltriethoxysilane and activated by glutaraldehyde was employed for the immobilization of concanavalin A, immunoglobulins, basic pancreatic trypsin inhibitor, and chymotrypsin. Its binding capacity is comparable with that of porous supports while the biological activity of the proteins immobilized is retained. Nonspecific adsorption of these proteins to the support is low compared to its binding capacity.  相似文献   

19.
The major types of components of cellulase [see 1,4-(1, 3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] have been adsorbed onto concanavalin A immobilized on Sepharose 4B, suggesting that they are glycoproteins. These components were covalently coupled to cyanogen bromide-activated Sepharose after aminoalkylation of their periodate-oxidized carbohydrate side chains to provide additional points of attachment of the enzyme to the support. Although there was only a 9% recovery of starting avicelase activity, the immobilized enzyme catalysed the hydrolysis of insoluble cellulose to glucose with greater efficiency than did free cellulase.  相似文献   

20.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号