首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ultrastructure of corpora lutea obtained during the preimplantation, implantation and early postimplantation periods has been studied in 20 western spotted skunks. Fine structure of granulosa lutein cells was correlated with progesterone levels. The corpus luteum of the prolonged (7 month) preimplantation period contained undifferentiated small granulosa cells and differentiated large granulosa lutein cells. The former ranged in size between 12 and 20 and the latter between 20 and 45 . The ratio of small and large cells was about equal in an animal 2 days prior to nidation whereas only few small cells and numerous large cells were observed in an animal estimated to be 8 to 12 hours from nidation. Occasionally small cells were observed amidst large ones during the 24 hour nidation period, i.e. adhesion of trophoblast with the luminal uterine epithelium, but small cells were absent in animals after this period. Small cells had some smooth and rough endoplasmic reticulum, rod-shaped mitochondria with platelike cristae, small Golgi complex, and relatively smooth plasma membranes. Large lutein cells had abundant smooth endoplasmic reticulum, membranous whorls of smooth endoplasmic reticulum, usually round mitochondria with tubular and lamellar cristae, a well developed Golgi complex, variable amounts of lipid droplets, and highly plicated and ruffled plasma membranes. Peripheral plasma progesterone levels during the prolonged preimplantation period ranged between 1.1 and 7.9 ng/ml, but during implantation it was between 8 and 16.6 ng/ml. It is suggested that plasma progesterone levels fluctuate during the time of implantation and should not be regarded as a basis to predict actual nidation in the western spotted skunk.This research was supported in part by Grant Number HD06556 from the National Institute of Child Health and Human Development.  相似文献   

2.
Localization of uterine arylamidase activity varied between species: arylamidase was found primarily in the apical aspect of uterine epithelial cells in the rabbit, hamster and non-pregnant rat; only moderate staining was observed in these animals in the endometrial stroma. By contrast, arylamidase localization was primarily stromal in the guinea-pig at all stages studied while the luminal epithelium was devoid of reactivity. In all species, uterine enzyme activity increased before implantation but decreased in the vicinity of the blastocyst once implantation had begun. A generalized increase over the entire length of the uterus was seen during the preimplantation phase in the uterine epithelium of the rabbit and in the endometrial stroma of the guinea-pig. Increase in stromal activity appeared to indicate predecidual transformations which were embryo-dependent (i.e. localized to the implantation site) in the rat, or embryo-independent (i.e. occurring throughout the uterus) in the guinea-pig. A subsequent decrease in enzyme activity occurred in the vicinity of the implanting embryo irrespective of the cell type involved (epithelium in the rabbit, stroma/decidua in the rat and guinea-pig). Since arylamidases of the type studied here are integrated membrane proteins, the uniformity of changes observed in different species may reflect profound changes in membrane properties of endometrial cells as an element of the implantation reaction.  相似文献   

3.
Early embryonic development and implantation were studied in tropical short-nosed fruit bat Cyanopterus sphinx. We report preimplantation development and embryo implantation. Different stages of cleavage were observed in embryo by direct microscopic examination of fresh embryos after retrieving them either from the oviduct or the uterus at different days, up to the day of implantation. Generally, the embryos enter the uterus at the 8-cell stage. Embryonic development continued without any delay and blastocyst were formed showing attachment to the uterine epithelium at the mesometrial side of the uterus. A distinct blue band was formed in the uterus. The site of blastocyst attachment was visualized as a blue band following intravenous injection of pontamine blue. Implantation occurred 9+/-0.7 days after mating. This study reports that bat embryonic development can be studied like other laboratory animals and that this bat shows blue dye reaction, indicating the site and exact time of implantation. This blue dye reaction can be used to accurately find post-implantational delay. We prove conclusively that this species of tropical bat does not have any type of embryonic diapause.  相似文献   

4.
5.
Embryonic development of the Chinese hamster (Cricetulus griseus) was studied from the onset of implantation to the formation of the parietal yolk sac placenta. Implantation began on day 6 of pregnancy, when the embryo became fixed to the uterine luminal epithelium. At this time there was no zona pellucida, and microvilli of the trophoblast and uterine epithelium were closely apposed. Stromal cells immediately adjacent to the implantation chamber began to enlarge and accumulate glycogen. By day 7 the mural trophoblast penetrated the luminal epithelium in discrete area. The trophoblast appeared to phagocytize uterine epithelial cells, although epithelium adjoining the points of penetration was normal. In other areas nascent apical protrusions from the uterine epithelium indented the surface of the trophoblast. The epiblast had enlarged and both visceral and parietal endoderm cells were present. The well-developed decidual cells were epithelioid and completely surrounded the implantation chamber. On day 8 the uterine epithelium had disappeared along the mural surface of the embryo. The embryonic cell mass was elongated and filled the yolk sac cavity. Reichert's membrane was well developed. The uterine epithelial basal lamina was largely disrupted, and the trophoblast was in direct contact with decidual cells. Primary and secondary giant trophoblast cells were present and in contact with extravasated maternal blood. The mural trophoblast formed channels in which blood cells were found in close proximity to Reichert's membrane. Decidual cells were in contact with capillary epithelium and in some cases formed part of the vessel wall. Structural changes occurring in the embryo and endometrium during implantation in the Chinese hamster are described for the first time in this report and are compared to those described for some other myomorph rodents.  相似文献   

6.
The process of embryo attachment and implantation is accompanied by dramatic cellular and functional changes in the endometrium, the control and mechanisms of which are not clearly understood. The cDNA cloning of differentially expressed genes, specifically at implantation sites in the rabbit endometrium, was used to identify genes controlling functional and remodeling changes. Tissue from the endometrium of Day 6(3/4) (preimplantation) and Day 8 (implantation initiation) pregnant rabbits was used to screen for differentially expressed genes by combined cDNA subtraction/suppressive hybridization. Twenty-nine differentially expressed genes were identified encoding protein modification enzymes, signaling proteins, structural proteins, and enzymes. One of these is a novel member of the E2 ubiquitin-conjugating enzyme family we have designated UBCi (i for implantation), which displayed dramatic nucleotide and deduced amino acid sequence conservation between rabbits, humans, and mice. In situ hybridization indicated UBCi expression exclusively in the luminal epithelium of the endometrium while glandular epithelium, trophoblast, and myometrium were negative. Expression was specific for epithelial cells at implantation sites and was not detected in non-implant-site endometrium. UBCi mRNA was detected in both the mesometrial and antimesometrial epithelial cells of the implantation sites, sites undergoing both differentiation and/or apoptosis. These results identify a group of differentially expressed genes in the endometrium including UBCi and provide new focal targets for studying processes controlling cellular remodeling during implantation. The important roles of ubiquitination in controlling the activities and turnover of key signaling proteins suggest potential roles in controlling critical aspects of implantation.  相似文献   

7.
8.
The features of proliferation and differentiation of the liver ductular epithelium from animals infected with opisthorchis were specified in experimental implantation growth. They manifested themselves in disorders of the mitotic regimen and intercellular interactions, in atypical proliferations and primary glandular metamorphism of regenerating cells.  相似文献   

9.
The rabbit endometrial epithelium undergoes differentiation prior to the time of blastocyst implantation, including loss of surface negativity and a change in glycocalyx morphology. Nonpregnant (estrous) and pseudopregnant rabbits were used to study specific alterations in proteins and saccharide composition of the luminal epithelial membrane and its glycocalyx related to the acquisition of receptivity to implantation. Pregnant animals were used to study further modification of the luminal surface by implanting blastocysts. The apical surface of luminal epithelial cells was solubilized by a 15-min intraluminal incubation of 1% Triton X-100 containing protease inhibitors. Proteins in extract solutions were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Three new polypeptides (24 kDa, 42 kDa and 58 kDa) were identified in uteri from receptive rabbits. Binding of succinyl Wheat Germ Agglutinin (sWGA) and Ricinus communis Agglutinin (RCA-I) lectins to the 24 kDa and 42 kDa components on Western blots of extracts separated by SDS-PAGE identified them as glycoproteins. Additionally, other polypeptides (26 kDa, 80-86 kDa and 145 kDa) showed changes in affinity for WGA, RCA-I or concanavalin A (Con A), depending on the hormonal state. Correlating with these findings was an increased binding of these lectins to intact nonciliated cells in uteri of receptive rabbits compared to estrous animals; ciliated cells bound Dolichos biflorus Agglutinin (DBA) specifically, regardless of the hormonal condition. Treatment of uteri from estrous animals, or Western blots of proteins from these animals, with neuraminidase prior to lectin exposure suggested the presence of glycoproteins having a sialic acid-D-galactose terminus in nonreceptive rabbits. Reduced binding of lectin to intact cells at implantation sites and to blots of proteins isolated from these sites, compared to nonimplantation sites, was noted. These results provide evidence for stage-specific alterations in protein and saccharide composition of the apical surface of endometrial epithelium prior to implantation, and indicate that implanting blastocysts further modify the luminal surface.  相似文献   

10.
During the initial steps of implantation, the mouse uterine epithelium of the implantation chamber undergoes apoptosis in response to the interacting blastocyst. With progressing implantation, regression of the decidual cells allows a restricted and coordinated invasion of trophoblast cells into the maternal compartment. In order to investigate pathways of apoptosis in mouse uterine epithelium and decidua during early pregnancy (day 4.5–7.0 post coitum), we have investigated different proteins such as TNFalpha, TNF receptor1, Fas ligand, Fas receptor1, Bax and Bcl2 as well as caspase-9 and caspase-3 using immunohistochemistry. To detect cells undergoing apoptosis the Tunel assay was performed. Immunoreactivity for TNFalpha as well as for TNF receptor1 was observed exclusively in the epithelium of the implantation chamber and the adjacent luminal epithelium from day 4.5 post coitum onwards. In the developing decidua the Fas ligand, but not the Fas receptor, was expressed. Bax and Bcl2 revealed a complementary expression pattern with Bax in the primary and Bcl2 in the adjacent decidual zone. Strong immunolabelling for the initiator caspase-9 was restricted to the decidual compartment, whereas caspase-3 expression characterized the apoptotic uterine epithelium. Only some caspase-3 positive decidual cells were found around the embryo which correlated to the pattern of Tunel staining. Taken together, the apoptotic degeneration of the uterine epithelium seems to be mediated by TNF receptor1 followed by caspase-3, whereas the very moderate regression of the decidua did not show the investigated death receptor, but Bax and Blc2 instead and in addition caspase-9, which indicates a different regulation for epithelial versus decidual apoptosis.  相似文献   

11.
This study was designed to test the hypothesis that ferret corpora lutea (CL) secrete a compound that acts in conjunction with progesterone to induce blastocyst implantation and to identify the chemical nature of this compound. CL and the residual ovarian tissue, obtained predominantly on the ninth day of pseudopregnancy, were extracted with 0.05 M phosphate-buffered saline. The extracts were injected into pregnant ferrets that had been ovariectomized on Day 6 of pregnancy and had received Silastic implants containing progesterone. Aqueous luteal extracts, but not those of the residual ovarian tissue, induced implantation in test animals. Fractionation of the luteal extracts by passage through a series of filters with molecular weight (MW) cutoffs ranging from 500 to 50,000 consistently revealed that the biologically active fraction was retained on the filter with the highest MW cutoff employed. Moreover, blastocyst implantation failed to occur in ovariectomized, progesterone-treated ferrets after one-half of a luteal preparation (MW greater than 50,000) was incubated with a broad-spectrum protease. These data are consistent with the hypothesis that CL of the ferret secrete a protein during the preimplantation period that is essential for blastocyst implantation.  相似文献   

12.
Summary The synthesis of glycoproteins in rabbit uterine epithelium during the late preimplantation period was studied using tritiated N-acetylglucosamine. In vivo labelling was achieved by the intra-uterine implantation of agar gel columns containing the precursor. Autoradiography showed the radioactivity to be predominantly localized in the apical cell surfaces, with single cells exhibiting an accumulation of silver grains in their supranuclear cytoplasm. After gel electrophoresis of uterine flushings, activity was mainly found in the -glycoprotein fraction. Fluorescein isothiocyanate (FITC)-conjugated wheat-germ agglutinin reacted with the apical cytoplasm and surfaces of the endometrial cells. However, FITC-conjugated concanavalin A exhibited a different binding pattern, reacting first with the basal cytoplasm, and later with the apical cytoplasm. After concanavalin-A staining, single cells exhibited positive vesicles in their lateral and apical parts. These cells may be released into the uterine lumen until 210 h post coitum. Neither of the lectins reacted with ciliated cells. Concanavalin A showed an affinity for the -glycoprotein fraction of the uterine secretion. The results indicate that, although all endometrial cells contain glycoproteins, only a few of these seem to be involved in the synthesis of secretory products.Supported by grants Ki 154/9-3 and 154/10-1 from the Deutsche Forschungsgemeinschaft  相似文献   

13.
Dynamic regulation of intercellular junctions is an essential aspect of many developmental, reproductive, and physiological processes. We have shown that expression of the desmosomal protein desmoplakin decreases in the luminal uterine epithelium during the preimplantation period of pregnancy in mice. By the time of implantation (between Days 4.5 and 5 of pregnancy), desmoplakin protein can barely be detected by SDS-PAGE and Western blotting, and by immunocytochemistry, it is restricted to well-spaced, punctate dots at the apicolateral junction. Using confocal XZ series and electron microscope quantitation, both the density and distribution of desmosomes along the lateral cell surfaces of luminal epithelial cells were observed to change during early pregnancy. On Day 1 of pregnancy, desmosomes were found at high density in the apicolateral junctional complex, being present here in 79% of ultrathin sections examined, whereas on Day 5, the density was much reduced (present in only 18% of ultrathin sections examined). Desmosomes were found along the lateral surfaces, at or below the level of the nucleus, in 15% of ultrathin sections examined on Day 1 of pregnancy but in only 1% on Day 5. Desmoplakin mRNA declined during the first 4-5 days of pregnancy, along with the protein, suggesting that these changes are controlled at the level of mRNA. This study shows that desmosomes are regulated during early pregnancy, and we propose that a reduction in desmosome adhesion facilitates penetration of the luminal epithelium by trophoblast cells at implantation.  相似文献   

14.
The purpose of this study was to demonstrate the expression of nidogen-1 and nidogen-2 and their possible role in decidualization and implantation events during early pregnancy in rats. The tissue samples were examined from pregnant animals between gestational days 1-8 using immunocytochemistry. The uterine luminal epithelium, the glandular epithelium, and the myometrial smooth muscle cells stained strongly from gestational days 1-8 with both nidogen antibodies. At day 4 the decidual reaction areas began to appear in the stromal matrix and immunostaining of both nidogens revealed that the basement membrane of the surface epithelium was discontinuous. The differentiation of stromal cells into decidual cells was seen at gestational day 5 and both nidogens were weakly expressed in the decidualizing cells. At day 6, nidogen-2 immunoreactivity was higher in the primary decidual cells close to the embryo than nidogen-1, and during development of the decidual tissue both nidogens appeared in the endometrial stromal cells. At day 7, while expression of both nidogens declined in the primary decidual cells, their expression was markedly observed in the secondary decidual cells close to the myometrium. At day 8, expression of both nidogens was also observed to increase in the primary decidual cells. While nidogen-2 expression was seen in the parietal endoderm and primary ectoderm of the rat embryos at this developmental stage, nidogen-1 expression was only detected in the parietal endoderm. These results indicate that nidogen-1 and nidogen-2 could play important roles during embryogenesis, decidualization, and implantation in the endometrium of rat uterus.  相似文献   

15.
Defects in preimplantation embryonic development, uterine receptivity, and implantation are the leading cause of infertility, pregnancy problems and birth defects. Significant progress has been made in our basic understanding of these processes using the mouse model, where implantation is ovarian estrogen-dependent in the presence of progesterone. However, an animal model where implantation is progesterone-dependent must also be studied to gain a full understanding of the embryo and uterine events that are required for implantation. In this regard, the hamster is a useful model and this review summarizes the information currently available regarding mechanisms involved in synchronous preimplantation embryo and uterine development for implantation in this species.  相似文献   

16.
The complex implantation process is initiated by the recognition and adhesion between the embryo and uterine endometrial epithelium. The expression and interactions between the adhesive molecules from both fetal and maternal sides are crucial for the successful implantation. In this study, we aimed to investigate the expression and adhesive function of sLeX on the trophoblasts and L-selectin on uterine epithelial cells mediated the adhesion at the fetal-maternal interface, and to further explore whether this adhesion system could induce endometrial apoptosis, using in vitro implantation model consisting of the human trophoblast cell line (JAR) and human uterine epithelial cell line (RL95-2). The results showed that sLeX was expressed on JAR cells by indirect immunofluorescence staining. After transfection of JAR cells with fucosyltransferase VII (FUT7) which is the key enzyme for sLeX synthesis, the expression of FUT7 and sLeX synthesis were increased, and the percent adhesion of trophoblast cells to RL95-2 cell monolayer was significantly increased (P?相似文献   

17.
During preimplantation development, the mouse embryo forms the blastocyst, which consists of a squamous epithelium enveloping a fluid-filled lumen and a cluster of pluripotent cells. The shaping of the blastocyst into its specific architecture is a prerequisite to implantation and further development of the embryo. Recent studies identified the central role of the actomyosin cortex in generating the forces driving the successive steps of blastocyst morphogenesis. As seen in other developing animals, actomyosin functions across spatial scales from the subcellular to the tissue levels. In addition, the slow development of the mouse embryo reveals that actomyosin contractility operates at multiple timescales with periodic cortical waves of contraction every ∼80 s and tissue remodeling over hours.  相似文献   

18.
Pregnant mice were ovariectomized at pre-implantation stage and exogenous nidatory estradiol was administered to evaluate the DNA synthesis of the endometrial cells during activation of uterine receptivity for blastocyst implantation. After 0, 3, 6, 12 and 18 hrs. of estradiol treatment, the animals received 3H-thymidine injection, sacrificed 1 hr. later, and the uteri were prepared for light and electron microscopic radioautography. At time 0, no labelled stromal or epithelial cells was found in the endometrium. According to the time-lapse after estradiol induction, a gradual increase of labelled stromal and endothelial cells was seen in the endometrium. The highest labeling index was observed at the antimesometrial side of the implantation sites and the lowest value was found at the interimplantation site. The cells found at mesometrial side of the implantation site showed an intermediate labeling index. Eighteen hrs. after estradiol treatment, the labelled stromal cells found near the implantation chamber resembled the morphology of decidual cells while those labelled cells localized at the interimplantation sites were similar to the fibroblast. The uterine luminal epithelial cells showed low DNA synthesis after estradiol treatment resulting in only a few labelled cells at the interimplantation sites and no labelled cells at the implantation sites. A similar labeling pattern was seen in the glandular epithelium. The distribution of labelled cells seen among the regions of pregnant endometrium under estradiol effect suggest that DNA synthesis related to uterine activation for blastocyst implantation is a focal reaction, where the luminal epithelium does nt proliferate while the stromal and endothelial cells around the conceptus increase the DNA synthesis to prepare the endometrial decidualization.  相似文献   

19.
The ultrastructure of club cells and neighbouring filament cells and leucocytes in the epidermis of carp, was studied under normal conditions and after exposure to several stressors: acid water, heavy metals, organic manure, brackish water and wounding. The effects of the stressors were remarkably similar. The club cells increased in size and contained more endoplasmic reticulum and Golgi areas. In both control and stressed fish, most mitotic figures of the filament cells were found adjacent to club cells, as was demonstrated after colchicine injection. Whereas in the controls apoptosis of filament cells was scarce and limited to the upper layer of the epithelium, in the stressed fish it was commonly seen in close proximity to the club cells but not in other mid-epidermal parts of the epithelium. This indicates that club cells influence the cellular kinetics of the filament cells. Under stress conditions leucocytes infiltrated the epidermis. Some were seen inside club cells. Apparently these leucocytes were taken up in phagosomes and subsequently they showed signs of necrotic degeneration. Leucocyte incorporation and degeneration in club cells were not observed in control fish. Control of the cellular turnover of filament cells and the elimination of leucocytes may represent new functions for club cells, which have mainly been associated with the production of pheromones.  相似文献   

20.
In polytocous animals, blastocysts are evenly distributed along each uterine horn and implant. The molecular mechanisms underlying these precise events remain elusive. We recently showed that lysophosphatidic acid (LPA) has critical roles in the establishment of early pregnancy by affecting embryo spacing and subsequent implantation through its receptor, LPA3. Targeted deletion of Lpa3 in mice resulted in delayed implantation and embryo crowding, which is associated with a dramatic decrease in the prostaglandins and prostaglandin-endoperoxide synthase 2 expression levels. Exogenous administration of prostaglandins rescued the delayed implantation but did not rescue the defects in embryo spacing, suggesting the role of prostaglandins in implantation downstream of LPA3 signaling. In the present study, to know how LPA3 signaling regulates the embryo spacing, we determined the time course distribution of blastocysts during the preimplantation period. In wild-type (WT) uteri, blastocysts were distributed evenly along the uterine horns at Embryonic Day 3.8 (E3.8), whereas in the Lpa3-deficient uteri, they were clustered in the vicinity of the cervix, suggesting that the mislocalization and resulting crowding of the embryos are the cause of the delayed implantation. However, embryos transferred singly into E2.5 pseudopregnant Lpa3-deficient uterine horns still showed delayed implantation but on-time implantation in WT uteri, indicating that embryo spacing and implantation timing are two segregated events. We also found that an LPA3-specific agonist induced rapid uterine contraction in WT mice but not in Lpa3-deficient mice. Because the uterine contraction is critical for embryo spacing, our results suggest that LPA3 signaling controls embryo spacing via uterine contraction around E3.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号