首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Abstract A glucose-negative and a pyruvate-negative strain of Mycoplasma mycoides ssp. mycoides were isolated by their resistance to 3-deoxy-3-fluoro- d -glucose and β-fluoropyruvate, respectively. The ability of the mutants to metabolise various substrates was investigated microcalorimetrically. Results suggest that both mutants are transport mutants. The pyruvate-negative mutant was unable to metabolise exogenous lactate. The kinetics of N -acetylglucosamine and fructose metabolism by the glucose-negative mutant were similar to those of the parent strain; glucosamine and mannose, however, were not metabolised, and it is suggested that their transport in the parent strain involves glucose-specific uptake component(s).  相似文献   

2.
Factors affecting hexose phosphorylation in Acetobacter xylinum   总被引:4,自引:1,他引:3       下载免费PDF全文
Fructose was oxidized and converted to cellulose by cells of Acetobacter xylinum grown on fructose or succinate, but not by cells grown on glucose. In resting fructose-grown cells, glucose strongly suppressed fructose utilization. Extracts obtained from fructose- or succinate-grown cells catalyzed the adenosine triphosphate (ATP)-dependent formation of the 6-phosphate esters of glucose and fructose, whereas glucose-grown cell extracts phosphorylated glucose but not fructose. Fructokinase and glucokinase activities were separated and partially purified from cells grown on glucose, fructose, or succinate. Whereas fructokinase phosphorylated fructose only, glucokinase was active towards glucose and less active towards mannose and glucosamine. The optimal pH for the fructokinase was 7.4 and for the glucokinase was 8.5. The K(m) values for the fructokinase were: fructose, 6.2 mm; and ATP, 0.83 mm. The K(m) values for the glucokinase were: glucose, 0.22 mm; and ATP, 4.2 mm. Fructokinase was inhibited by glucose, glucosamine, mannose, and deoxyglucose in a manner competitive with respect to fructose, with K(i) values of 0.1, 0.14, 0.5, and 7.5 mm, respectively. Adenosine diphosphate (ADP) and adenosine monophosphate (AMP) inhibited both kinases noncompetitively with respect to ATP. The K(i) values were: 1.8 mm (ADP) and 2.1 mm (AMP) for fructokinase, and 2.2 mm (ADP) and 9.6 mm (AMP) for glucokinase. Fructose metabolism in A. xylinum appears to be regulated by the synthesis and activity of fructokinase.  相似文献   

3.
Chinese hamster ovary cells (CHO-K1) are able to utilise only a few carbohydrates for growth such as glucose, mannose, fructose and galactose. They do not grow on ribose, lactose, sucrose, glycerol, lactate, pyruvate, citrate, succinate, fumarate or malate nor on glycogenic or ketogenic amino acids. After mutagenesis and selection in glucose free medium supplemented with various, individual, growth substrates, we have isolated single-cell derived clones which are now able to grow on one of the following energy source: ribose, lactose, sucrose or lactate.  相似文献   

4.
Glucose metabolism in mouse pancreatic islets   总被引:35,自引:22,他引:13  
1. Rates of glucose oxidation, lactate output and the intracellular concentration of glucose 6-phosphate were measured in mouse pancreatic islets incubated in vitro. 2. Glucose oxidation rate, measured as the formation of (14)CO(2) from [U-(14)C]glucose, was markedly dependent on extracellular glucose concentration. It was especially sensitive to glucose concentrations between 1 and 2mg/ml. Glucose oxidation was inhibited by mannoheptulose and glucosamine but not by phlorrhizin, 2-deoxyglucose or N-acetylglucosamine. Glucose oxidation was slightly stimulated by tolbutamide but was not significantly affected by adrenaline, diazoxide or absence of Ca(2+) (all of which may inhibit glucose-stimulated insulin release), by arginine or glucagon (which may stimulate insulin release) or by cycloheximide (which may inhibit insulin synthesis). 3. Rates of lactate formation were dependent on the extracellular glucose concentration and were decreased by glucosamine though not by mannoheptulose; tolbutamide increased the rate of lactate output. 4. Islet glucose 6-phosphate concentration was also markedly dependent on extracellular glucose concentration and was diminished by mannoheptulose or glucosamine; tolbutamide and glucagon were without significant effect. Mannose increased islet fructose 6-phosphate concentration but had little effect on islet glucose 6-phosphate concentration. Fructose increased islet glucose 6-phosphate concentration but to a much smaller extent than did glucose. 5. [1-(14)C]Mannose and [U-(14)C]fructose were also oxidized by islets but less rapidly than glucose. Conversion of [1-(14)C]mannose into [1-(14)C]glucose 6-phosphate or [1-(14)C]glucose could not be detected. It is concluded that metabolism of mannose is associated with poor equilibration between fructose 6-phosphate and glucose 6-phosphate. 6. These results are consistent with the idea that glucose utilization in mouse islets may be limited by the rate of glucose phosphorylation, that mannoheptulose and glucosamine may inhibit glucose phosphorylation and that effects of glucose on insulin release may be mediated through metabolism of the sugar.  相似文献   

5.
Fructose, like glucose, rapidly equilibrates across the plasma membrane of pancreatic islet cells, but is poorly metabolized and is a weak insulin secretagogue in rat pancreatic islets. A possible explanation for such a situation was sought by investigating the modality of fructose phosphorylation in islet homogenates. Several findings indicated that the phosphorylation of fructose is catalyzed by hexokinase, but not fructokinase. First, at variance with the situation found in liver homogenates, the phosphorylation of fructose in the islet homogenate was unaffected by K+ and inhibited by glucose, mannose, glucose 6-phosphate or glucose 1,6-bisphosphate. Second, the Km for fructose was much higher in islets than in liver. Third, in islet homogenates the Km and Vmax for fructose were much higher than those for glucose or mannose phosphorylation, at low aldohexose concentrations, in good agreement with the properties of purified hexokinase. In intact islets fructose augmented the islet content in glucose 6-phosphate sufficiently to cause marked inhibition of its own rate of phosphorylation. These findings may account, in part at least, for the low rate of fructose utilization by rat pancreatic islets.  相似文献   

6.
SYNOPSIS Some carbohydrates inhibited glucose and fructose transport in Trypanosoma gambiense. Glucose transport was inhibited by glycerol, mannose, 2-deoxy-D-glucose, glucosamine and N-acetylglucosamine. Fructose transport was inhibited by glucose, glycerol, mannose, glucosamine and N-acetylglucosamine. Glucosamine transport appeared to be a mediated process and had a Km of 1.20 mM and a Vmax of 28.5 μM glucosamine/g dry wt/2 min. Glucosamine absorption was competitively inhibited by glucose, fructose and N-acetylglycosamine. N-Acetylglucosamine appeared to enter by passive diffusion. Reciprocal inhibition experiments suggested that glucosamine entered entirely via the “fructose site.” Specificity of sugar transport in T. gambiense differs from that of other organisms.  相似文献   

7.
Mutants of Escherichia coli devoid of the membrane-spanning proteins PtsG and PtsMP, which are components of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and which normally effect the transport into the cells of glucose and mannose, do not grow upon or take up either sugar. Pseudorevertants are described that take up, and grow upon, mannose at rates strongly dependent on the mannose concentration in the medium (apparent Km > 5 mM); such mutants do not grow upon glucose but are derepressed for the components of the fructose operon. Evidence is presented that mannose is now taken up via the fructose-PTS to form mannose 6-phosphate, which is further utilized for growth via fructose 6-phosphate and fructose 1,6-bisphosphate.  相似文献   

8.
During evolution, pathogenic bacteria have developed complex interactions with their hosts. This has frequently involved the acquisition of virulence factors on pathogenicity islands, plasmids, transposons, or prophages, allowing them to colonize, survive, and replicate within the host. In contrast, Mycoplasma species, the smallest self-replicating organisms, have regressively evolved from gram-positive bacteria by reduction of the genome to a minimal size, with the consequence that they have economized their genetic resources. Hence, pathogenic Mycoplasma species lack typical primary virulence factors such as toxins, cytolysins, and invasins. Consequently, little is known how pathogenic Mycoplasma species cause host cell damage, inflammation, and disease. Here we identify a novel primary virulence determinant in Mycoplasma mycoides subsp. mycoides Small Colony (SC), which causes host cell injury. This virulence factor, released in significant amounts in the presence of glycerol in the growth medium, consists of toxic by-products such as H2O2 formed by l-alpha-glycerophosphate oxidase (GlpO), a membrane-located enzyme that is involved in the metabolism of glycerol. When embryonic calf nasal epithelial cells are infected with M. mycoides subsp. mycoides SC in the presence of physiological amounts of glycerol, H2O2 is released inside the cells prior to cell death. This process can be inhibited with monospecific anti-GlpO antibodies.  相似文献   

9.
The oxidation of some exogenous substrates and their effects on ATP content and insulin release in mouse pancreatic islets were measured. The ATP concentration of islets incubated without exogenous substrate shows a gradual decrease, which can be prevented by glucose or mannose (20mm) or leucine (2.5mm); d-glyceraldehyde (5mm) is as effective as glucose (5mm); fructose or N-acetylglucosamine (20mm), pyruvate (10mm) and dl-3-hydroxybutyrate (2mm) are less effective; galactose (20mm), acetate (10mm), octanoate (2mm) and succinate (10mm) have no ATP-maintaining ability. Islets oxidize glucose, mannose, glyceraldehyde, leucine and, less readily, N-acetylglucosamine and glucosamine; galactose, however, is poorly metabolized. Mannoheptulose inhibits the oxidation of glucose but not of glyceraldehyde. Insulin release, measured over a 2h incubation, is stimulated by glucose, mannose, leucine, glyceraldehyde or glucosamine but not by fructose or N-acetylglucosamine. The latter, however, potentiates the effects of glucose or glyceraldehyde (5mm) or leucine (2.5mm) on release; the potentiating effects are inhibited by mannoheptulose, which also blocks glucose-, but not glyceraldehyde- or leucine-stimulated release. In the presence of glucose (20mm), metabolic inhibitors depress insulin release and islet ATP content in parallel. However, rates of insulin release and ATP content measured after incubation with various combinations of exogenous substrates do not appear to be correlated. Sulphonylureas stimulate insulin release but decrease islet ATP concentrations. These results provide further evidence of a close association between the metabolic activity of exogenous substrates and their ability to initiate insulin release. Glucoreceptor models are formulated in the light of these observations and discussed.  相似文献   

10.
SYNOPSIS. The glucose transport system in Leishmania tropica promastigotes was characterized by the use of labeled 2-deoxy-D-glucose (2-DOG), a nonmetabolizable glucose analog. The uptake system has a Q10 of 2 and a heat of activation of 10.2 kcal/mole. The glucose transport system is subject to competitive inhibition by 2-DOG, glucosamine, N-acetyl glucosamine, mannose, galactose, and fructose which suggests that substitutions in the hexose chain at carbons 2 and 4 do not affect carrier specificity. In contrast, changes at carbon 1 (α-methyl-D-glucoside, 1,5-anhydroglucitol) and carbon 3 (3–0-methyl glucose) lead to loss of carrier affinity since these sugars do not compete for the glucose carrier. Sugars that compete with the glucose carrier have one common feature—they all exist in the pyranose form in solution. The carrier for D-glucose does not interact with L-glucose or any of the pentose sugars tested. Uptake of 2-DOG is inhibited by glycerol. This inhibition, however, is noncompetitive; it is evident, therefore, that glucose and glycerol do not compete for the same carrier. Glycerol does not repress the glucose carrier since cells grown in presence of glycerol transport the sugar normally.  相似文献   

11.
1. Fructose caused an increase in the rate of ethanol oxidation by rat-liver slices, and d-glyceraldehyde was found to have a similar effect. 2. Addition of glycerol lowered the rate of ethanol oxidation if the incubation medium contained fructose and ethanol, but no such effect was found if it contained glucose and ethanol. 3. The formation of glycerol by the slices during incubation and the concentration of alpha-glycerophosphate in the slices were highest in medium containing fructose and ethanol. 4. In experiments without ethanol in the incubation medium, fructose strongly increased the pyruvate concentration, which resulted in a decrease of the lactate/pyruvate concentration ratio. Addition of ethanol to the medium resulted in a marked decrease in pyruvate concentration. 5. Oxygen consumption is greater in slices incubated in medium containing fructose and ethanol than in slices incubated in medium containing glucose and ethanol.  相似文献   

12.
Carbohydrate Utilization in Lactobacillus sake   总被引:5,自引:2,他引:3       下载免费PDF全文
The ability of Lactobacillus sake to use various carbon sources was investigated. For this purpose we developed a chemically defined medium allowing growth of L. sake and some related lactobacilli. This medium was used to determine growth rates on various carbohydrates and some nutritional requirements of L. sake. Mutants resistant to 2-deoxy-d-glucose (a nonmetabolizable glucose analog) were isolated. One mutant unable to grow on mannose and one mutant deficient in growth on mannose, fructose, and sucrose were studied by determining growth characteristics and carbohydrate uptake and phosphorylation rates. We show here that sucrose, fructose, mannose, N-acetylglucosamine, and glucose are transported and phosphorylated by the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS permease specific for mannose, enzyme II(supMan), was shown to be responsible for mannose, glucose, and N-acetylglucosamine transport. A second, non-PTS system, which was responsible for glucose transport, was demonstrated. Subsequent glucose metabolism involved an ATP-dependent phosphorylation. Ribose and gluconate were transported by PTS-independent permeases.  相似文献   

13.
The transport and metabolism of glucose was examined in monolayers of C-6 glioma cells. 1) Glucose transport appeared to have both a low (Km = 7.74 mM) and a high (Km = 1.16 mM) affinity site in C-6cells; whereas 2-deoxyglucose had only one (Km = 3.7 mM). 2) A large portion of the accumulated glucose was rapidly metabolized to the two glycolytic end products, lactate and pyruvate, and then extruded into the medium. The temperature-dependent efflux of lactate and pyruvate was linear up to 2 hrs with 6 to 10 times more lactate being extruded into the medium than pyruvate. 3) The efflux of lactate and pyruvate increased with increasing extracellular (medium) pH. The presence of 5 percent CO2 not only inhibited the acid efflux but also inhibited the short-term uptake of glucose. The CO2 effect was attributed to a lowering of the medium pH since bicarbonate alone either increased or did not inhibit efflux. 4) Valinomycin increased the levels of cellular lactate but not those of pyruvate by almost three-fold. Lactate efflux was stimulated while that of pyruvate was inhibited. The addition of 5 percent CO2 increased the cellular levels of both lactate and pyruvate, but unlike valinomycin decreased the acid efflux. Idoacetate inhibited the acid efflux by 50 percent suggesting that glycolysis is necessary for efflux.  相似文献   

14.
Polyacrylamide gel electrophoresis and isoelectric focusing techniques have been used to compare NAD-dependent L(plus) lactate dehydrogenases (LDH) from ten different strains of Mycoplasma mycoides var. mycoides. The enzymes were not distinguished from one another, or from normal bovine LDH 1 by these methods. The kinetic behaviour of LDH form M. mycoides (T1 vaccine strain) suggested that the enzyme could readily reduce pyruvate or oxidize lactate in a manner which, in vertebrates, requires two different isoenzymes.  相似文献   

15.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

16.
α-glucosidase in Mycoplasma mycoides subspecies capri   总被引:1,自引:0,他引:1  
Abstract Mycoplasma mycoides subsp. capri utilisede maltose in medium lacking serum and hence serum saccharolytic enzymes. The presence of α-glucosidase activity was demonstrated by p-nitrophenyl-α- d -glucoside hydrolysis in toluene-treated cells. Specific activities were approx. 4-fold higher in cells grown in the presence of maltose than in cells grown with other sugars or with glucose plus maltose. Extracellular activity was < 2% of cellular activity in growing cultures. α-Glucosidase activity was also demonstrated in cells grown in medium containing serum. It is suggested that the presence of α-glucosidase might be of value in mycoplasma chatacterisation; in a previous study, α-glucosidase activity was not detected in Mycoplasma mycoides subsp. mycoides .  相似文献   

17.
The aim of this research effort was to investigate the role of various sugar substrates in the growth medium upon thermotolerance and upon survival during storage after freeze-drying of Lactobacillus bulgaricus. Addition of the sugars tested to the growth medium, and of these and sorbitol to the drying medium (skim milk) was investigated so as to determine whether a relationship exists between growth and drying media, in terms of protection of freeze-dried cells throughout storage. The lowest decrease in viability of L. bulgaricus cells after freeze-drying was obtained when that organism was grown in the presence of mannose. However, L. bulgaricus clearly survived better during storage when cells had been grown in the presence of fructose, lactose or mannose rather than glucose (the standard sugar in the growth medium). A similar effect could not be observed in terms of thermotolerance; in this case, the growth medium supplemented with lactose was found to yield cells bearing the highest heat resistance. Supplementation of the drying medium with glucose, fructose, lactose, mannose or sorbitol led in most cases to enhancement of protection during storage, to a degree that was growth medium-dependent.  相似文献   

18.
Uptake and metabolism of sucrose by Streptococcus lactis   总被引:15,自引:11,他引:4       下载免费PDF全文
Transport and metabolism of sucrose in Streptococcus lactis K1 have been examined. Starved cells of S. lactis K1 grown previously on sucrose accumulated [14C]sucrose by a phosphoenolpyruvate-dependent phosphotransferase system (PTS) (sucrose-PTS; Km, 22 microM; Vmax, 191 mumol transported min-1 g of dry weight of cells-1). The product of group translocation was sucrose 6-phosphate (6-O-phosphoryl-D-glucopyranosyl-1-alpha-beta-2-D-fructofuranoside). A specific sucrose 6-phosphate hydrolase was identified which cleaved the disaccharide phosphate (Km, 0.10 mM) to glucose 6-phosphate and fructose. The enzyme did not cleave sucrose 6'-phosphate(D-glucopyranosyl-1-alpha-beta-2-D-fructofuranoside-6'-phosphate). Extracts prepared from sucrose-grown cells also contained an ATP-dependent mannofructokinase which catalyzed the conversion of fructose to fructose 6-phosphate (Km, 0.33 mM). The sucrose-PTS and sucrose 6-phosphate hydrolase activities were coordinately induced during growth on sucrose. Mannofructokinase appeared to be regulated independently of the sucrose-PTS and sucrose 6-phosphate hydrolase, since expression also occurred when S. lactis K1 was grown on non-PTS sugars. Expression of the mannofructokinase may be negatively regulated by a component (or a derivative) of the PTS.  相似文献   

19.
Hydrolysis of sugar phosphates by crude and purified preparations of periplasmic hexose phosphatase from Salmonella typhimurium followed Michaelis-Menten kinetics. The enzyme bound glucose 1-phosphate with high affinity (Km = 10 microM) but bound glucose 6-phosphate with low affinity (Km = 2,000 microM). The order of substrate affinities was glucose 1-phosphate greater than mannose 1-phosphate = galactose 1-phosphate greater than fructose 1-phosphate greater than glucose 6-phosphate. These results and others suggest that the physiological function of the enzyme is the periplasmic hydrolysis of hexose 1-phosphates.  相似文献   

20.
The effects of insulin on glucose transport and metabolism were examined in cultured HT29 human colonic adenocarcinoma cells. The presence of glucose transporters was verified by D-glucose displaceable [3H]cytochalasin B binding. The Kd and Bmax values from cytochalasin B binding studies were 190 +/- 30 nM and 8.4 +/- 1.4 pmol/mg protein, respectively. Glucose transport determined with 3-O-methylglucose showed saturable kinetics with a Km of 5.8 +/- 0.4 mM and a Vmax of 0.047 +/- 0.003 mumol/mg protein per min at 25 degrees C. Moreover, in HT29 cells, two classes of insulin binding sites were detected in radioligand binding experiments. Although insulin failed to stimulate glucose transport, it was found to activate glycolysis in HT29 cells. Glucose consumption increased from 0.33 +/- 0.03 mumol/mg protein per h to 0.49 +/- 0.05 mumol/mg protein per h and lactate production was augmented from 0.67 +/- 0.04 mumol/mg protein per h to 0.87 +/- 0.06 mumol/mg protein per h in response to 10(-7) to 10(-5) M insulin. Insulin also enhanced mannose metabolism. Apart from these two hexoses, HT29 cells exhibited a surprisingly narrow substrate specificity. With the possible exception of glyceraldehyde, little lactate was produced from alternative substrates, including adenosine, inosine, ribose, deoxyribose, dihydroxyacetone, galactose and fructose either with or without insulin. Despite its limited utilization by the glycolytic pathway, adenosine was readily salvaged for de novo synthesis of adenine nucleotides. These findings suggest that insulin directly influences substrate utilization through the glycolytic pathway in HT29 cells without activating the glucose transport pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号