首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bovine papillomavirus E5 gene encodes a 44-amino-acid, homodimeric transmembrane protein that is the smallest known transforming protein. The E5 protein transforms cultured fibroblasts by forming a stable complex with the endogenous platelet-derived growth factor (PDGF) beta receptor through transmembrane and juxtamembrane interactions, leading to sustained receptor activation. Aspartic acid 33 in the extracellular juxtamembrane region of the E5 protein is important for cell transformation and interaction with the PDGF beta receptor. A. N. Meyer et al. (Proc. Natl. Acad. Sci USA 91:4634-4638, 1994) speculated that this residue interacted with lysine 499 on the receptor. We constructed E5 mutants containing all possible substitutions at position 33, as well as several double mutants containing substitutions at aspartic acid 33 and at glutamic acid 36, and we examined the ability of these mutants to transform C127 mouse fibroblasts and to bind to and induce activation of the PDGF beta receptor. There was an excellent correlation between the transformation activities of the various mutants and their ability to bind to and activate the PDGF beta receptor. Analysis of the mutants demonstrated that a juxtamembrane negative charge on the E5 protein was required for cell transformation and for productive interaction with the PDGF beta receptor and indicated that aspartic acid 33 was more important for these activities than was glutamic acid 36. These results are consistent with the existence of an essential juxtamembrane salt bridge between lysine 499 on the PDGF beta receptor and an acidic residue in the C terminus of the E5 protein and lend support to our proposed model for the complex between the E5 dimer and the PDGF beta receptor.  相似文献   

2.
The bovine papillomavirus E5 protein is a small, homodimeric transmembrane protein that forms a stable complex with the cellular platelet-derived growth factor (PDGF) β receptor through transmembrane and juxtamembrane interactions, resulting in receptor activation and cell transformation. Glutamine 17 in the transmembrane domain of the 44-amino-acid E5 protein is critical for complex formation and receptor activation, and we previously proposed that glutamine 17 forms a hydrogen bond with threonine 513 of the PDGF β receptor. We have constructed and analyzed mutant E5 proteins containing all possible amino acids at position 17 and examined the ability of these proteins to transform C127 fibroblasts, which express endogenous PDGF β receptor. Although several position 17 mutants were able to transform cells, mutants containing amino acids with side groups that were unable to participate in hydrogen bonding interactions did not form a stable complex with the PDGF β receptor or transform cells, in agreement with the proposed interaction between position 17 of the E5 protein and threonine 513 of the receptor. The nature of the residue at position 17 also affected the ability of the E5 proteins to dimerize. Overall, there was an excellent correlation between the ability of the various E5 mutant proteins to bind the PDGF β receptor, lead to receptor tyrosine phosphorylation, and transform cells. Similar results were obtained in Ba/F3 hematopoietic cells expressing exogenous PDGF β receptor. In addition, treatment of E5-transformed cells with a specific inhibitor of the PDGF receptor tyrosine kinase reversed the transformed phenotype. These results confirm the central importance of the PDGF β receptor in mediating E5 transformation and highlight the critical role of the residue at position 17 of the E5 protein in the productive interaction with the PDGF β receptor. On the basis of molecular modeling analysis and the known chemical properties of the amino acids, we suggest a structural basis for the role of the residue at position 17 in E5 dimerization and in complex formation between the E5 protein and the PDGF β receptor.  相似文献   

3.
The 44-amino-acid E5 protein of bovine papillomavirus is a dimeric transmembrane protein that exists in a stable complex with the platelet-derived growth factor (PDGF) β receptor, causing receptor activation and cell transformation. The transmembrane domain of the PDGF β receptor is required for complex formation, but it is not known if the two proteins contact one another directly. Here, we studied a PDGF β receptor mutant containing a leucine-to-isoleucine substitution in its transmembrane domain, which prevents complex formation with the wild-type E5 protein in mouse BaF3 cells and inhibits receptor activation by the E5 protein. We selected E5 mutants containing either a small deletion or multiple substitution mutations that restored binding to the mutant PDGF β receptor, resulting in receptor activation and growth factor independence. These E5 mutants displayed lower activity with PDGF β receptor mutants containing other transmembrane substitutions in the vicinity of the original mutation, and one of them cooperated with a receptor mutant containing a distal mutation in the juxtamembrane domain. These results provide strong genetic evidence that the transmembrane domains of the E5 protein and the PDGF β receptor contact one another directly. They also demonstrate that different mutations in the E5 protein allow it to tolerate the same mutation in the PDGF β receptor transmembrane domain and that a mutation in the E5 protein can allow it to tolerate different mutations in the PDGF β receptor. Thus, the rules governing direct interactions between transmembrane helices are complex and not restricted to local interactions.  相似文献   

4.
The 44 amino acid E5 transmembrane protein is the primary oncogene product of bovine papillomavirus. Homodimers of the E5 protein activate the cellular PDGF beta receptor tyrosine kinase by binding to its transmembrane domain and inducing receptor dimerization, resulting in cellular transformation. To investigate the role of transmembrane hydrophilic amino acids in receptor activation, we constructed a library of dimeric small transmembrane proteins in which 16 transmembrane amino acids of the E5 protein were replaced with random, predominantly hydrophobic amino acids. A low level of hydrophilic amino acids was encoded at each of the randomized positions, including position 17, which is an essential glutamine in the wild-type E5 protein. Library proteins that induced transformation in mouse C127 cells stably bound and activated the PDGF beta receptor. Strikingly, 35% of the transforming clones had a hydrophilic amino acid at position 17, highlighting the importance of this position in activation of the PDGF beta receptor. Hydrophilic amino acids in other transforming proteins were found adjacent to position 17 or at position 14 or 21, which are in the E5 homodimer interface. Approximately 22% of the transforming proteins lacked hydrophilic amino acids. The hydrophilic amino acids in the transforming clones appear to be important for driving homodimerization, binding to the PDGF beta receptor, or both. Interestingly, several of the library proteins bound and activated PDGF beta receptor transmembrane mutants that were not activated by the wild-type E5 protein. These experiments identified transmembrane proteins that activate the PDGF beta receptor and revealed the importance of hydrophilic amino acids at specific positions in the transmembrane sequence. Our identification of transformation-competent transmembrane proteins with altered specificity suggests that this approach may allow the creation and identification of transmembrane proteins that modulate the activity of a variety of receptor tyrosine kinases.  相似文献   

5.
The E5 protein of bovine papillomavirus type 1 binds to and activates the endogenous platelet-derived growth factor (PDGF) beta receptor in fibroblasts, resulting in cell transformation. We have developed a functional assay to test the ability of PDGF beta receptor mutants to mediate a mitogenic signal initiated by the E5 protein. Lymphoid Ba/F3 cells are strictly dependent on interleukin-3 for growth, but coexpression of the wild-type PDGF beta receptor and the E5 or v-sis-encoded protein generated a mitogenic signal which allowed Ba/F3-derived cells to proliferate in the absence of interleukin-3. In these cells, the E5 protein bound to and caused increased tyrosine phosphorylation of both the mature and the precursor forms of the wild-type PDGF beta receptor. The tyrosine kinase activity of the receptor was necessary for E5-induced receptor tyrosine phosphorylation and mitogenic activity but not for complex formation with the E5 protein. In contrast, the PDGF-binding domain of the receptor was not required for complex formation with the E5 protein, E5-induced tyrosine phosphorylation or mitogenic activity, demonstrating that E5-mediated receptor activation is ligand independent. Analysis of receptor mutants lacking various combinations of tyrosine phosphorylation sites revealed that the E5 and v-sis-encoded proteins display similar requirements for signaling and suggested that the wild-type PDGF beta receptor can generate multiple independent mitogenic signals. Importantly, these mutants dissociated two activities of the PDGF beta receptor tyrosine kinase, both of which are required for sustained mitogenic signaling: (i) receptor autophosphorylation and creation of binding sites for SH2 domain-containing proteins and (ii) phosphorylation of substrates other than the receptor itself.  相似文献   

6.
The bovine papillomavirus E5 protein is a 44-amino-acid transmembrane protein that transforms cells by binding to the transmembrane region of the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in sustained receptor signaling. However, there are published reports that certain mutants with amino acid substitutions in the membrane-spanning segment of the E5 protein transform cells without activating the PDGF beta receptor. We re-examined several of these transmembrane mutants, and here we present five lines of evidence that these mutants do in fact activate the PDGF beta receptor, resulting in cellular signaling and transformation.  相似文献   

7.
The bovine papillomavirus E5 protein is a 44-amino-acid membrane-associated protein that forms a stable complex with the endogenous platelet-derived growth factor (PDGF) beta receptor in rodent and bovine fibroblasts, resulting in sustained receptor activation and cell transformation. We report here that high-level expression of the E5 protein caused a reduction in the level of the mature form of the PDGF beta receptor in acutely and stably transformed mouse C127 cells. To explore in more detail the interaction of the E5 protein and the PDGF beta receptor, we tested the abilities of various E5 point mutants to bind the PDGF receptor, to induce PDGF receptor down-regulation and tyrosine phosphorylation, and to transform cells. A transformation-competent mutant, like the wild-type E5 protein, bound the receptor and induced receptor tyrosine phosphorylation and down-regulation. Transformation-defective E5 proteins either failed to interact with the endogenous PDGF beta receptor in mouse fibroblasts or underwent an aberrant interaction with the receptor. Mutation of glutamine at position 17, aspartic acid at position 33, or both carboxyl-terminal cysteine residues required for E5 homodimerization interfered with stable complex formation with the PDGF receptor, tyrosine phosphorylation and down-regulation of the receptor, and cell transformation. Point mutations at several other carboxyl-terminal positions generated transformation-defective E5 proteins that formed a complex with the PDGF receptor and induced receptor tyrosine phosphorylation but did not induce PDGF receptor down-regulation. Either PDGF receptor activation is not sufficient for transformation of C127 cells or the receptors that are tyrosine phosphorylated in response to these mutant E5 proteins are not fully activated and therefore are not able to deliver a mitogenic signal.  相似文献   

8.
Nappi VM  Petti LM 《Journal of virology》2002,76(16):7976-7986
The bovine papillomavirus E5 protein activates the cellular platelet-derived growth factor beta receptor (PDGFbetaR) tyrosine kinase in a ligand-independent manner. Evidence suggests that the small transmembrane E5 protein homodimerizes and physically interacts with the transmembrane domain of the PDGFbetaR, thereby inducing constitutive dimerization and activation of this receptor. Amino acids in the receptor previously found to be required for the PDGFbetaR-E5 interaction are a transmembrane Thr513 and a juxtamembrane Lys499. Here, we sought to determine if these are the only two receptor amino acids required for an interaction with the E5 protein. Substitution of large portions of the PDGFbetaR transmembrane domain indicated that additional amino acids in both the amino and carboxyl halves of the receptor transmembrane domain are required for a productive interaction with the E5 protein. Indeed, individual amino acid substitutions in the receptor transmembrane domain identified roles for the extracellular proximal transmembrane residues in the interaction. These data suggest that multiple amino acids within the transmembrane domain of the PDGFbetaR are required for a stable interaction with the E5 protein. These may be involved in direct protein-protein contacts or may support the proper transmembrane alpha-helical conformation for optimal positioning of the primary amino acid requirements.  相似文献   

9.
The 44-amino acid E5 protein of bovine papillomavirus is a homo-dimeric, transmembrane protein that transforms cells by activating the platelet-derived growth factor ß receptor in a ligand-independent fashion. The E5 protein induces receptor activation by forming a stable complex with the receptor, thereby inducing receptor dimerization, trans-phosphorylation of tyrosine residues in the cytoplasmic domain of the receptor, and recruitment of cellular SH2 domain-containing proteins into a signal transduction complex. Direct interactions between specific transmembrane and juxtamembrane amino acids in the E5 protein and the PDGF ß receptor appear to drive complex formation and dimerization of the receptor. Further analysis of this unique mechanism of viral transformation promises to yield new insight into the regulation of growth factor receptor activity and cellular signal transduction pathways.  相似文献   

10.
Growth factor receptors are typically activated by the binding of soluble ligands to the extracellular domain of the receptor, but certain viral transmembrane proteins can induce growth factor receptor activation by binding to the receptor transmembrane domain. For example, homodimers of the transmembrane 44-amino acid bovine papillomavirus E5 protein bind the transmembrane region of the PDGF beta receptor tyrosine kinase, causing receptor dimerization, phosphorylation, and cell transformation. To determine whether it is possible to select novel biologically active transmembrane proteins that can activate growth factor receptors, we constructed and identified small proteins with random hydrophobic transmembrane domains that can bind and activate the PDGF beta receptor. Remarkably, cell transformation was induced by approximately 10% of the clones in a library in which 15 transmembrane amino acid residues of the E5 protein were replaced with random hydrophobic sequences. The transformation-competent transmembrane proteins formed dimers and stably bound and activated the PDGF beta receptor. Genetic studies demonstrated that the biological activity of the transformation-competent proteins depended on specific interactions with the transmembrane domain of the PDGF beta receptor. A consensus sequence distinct from the wild-type E5 sequence was identified that restored transforming activity to a non-transforming poly-leucine transmembrane sequence, indicating that divergent transmembrane sequence motifs can activate the PDGF beta receptor. Molecular modeling suggested that diverse transforming sequences shared similar protein structure, including the same homodimer interface as the wild-type E5 protein. These experiments have identified novel proteins with transmembrane sequences distinct from the E5 protein that can activate the PDGF beta receptor and transform cells. More generally, this approach may allow the creation and identification of small proteins that modulate the activity of a variety of cellular transmembrane proteins.  相似文献   

11.
Receptors for PDGF play an important role in cell proliferation and migration and have been implicated in certain cancers. The 44-amino acid E5 protein of bovine papillomavirus binds to and activates the PDGFβ receptor (PDGFβR), resulting in oncogenic transformation of cultured fibroblasts. Previously, we isolated an artificial 36-amino acid transmembrane protein, pTM36-4, which transforms cells because of its ability to activate the PDGFβR despite limited sequence similarity to E5. Here, we demonstrated complex formation between the PDGFβR and three pTM36-4 mutants: T21E, T21Q, and T21N. T21Q retained wild type transforming activity and activated the PDGFβR in a ligand-independent manner as a consequence of binding to the transmembrane domain of the PDGFβR, but T21E and T21N were severely defective. In fact, T21N substantially inhibited E5-induced PDGFβR activation and transformation in both mouse and human fibroblasts. T21N did not prevent E5 from binding to the receptor, and genetic evidence suggested that T21N and E5 bind to nonidentical sites in the transmembrane domain of the receptor. T21N also inhibited transformation and PDGFβR activation induced by v-Sis, a viral homologue of PDGF-BB, as well as PDGF-induced mitogenesis and signaling by preventing phosphorylation of the PDGFβR at particular tyrosine residues. These results demonstrated that T21N acts as a novel inhibitor of the PDGFβR and validated a new strategy for designing highly specific short transmembrane protein inhibitors of growth factor receptors and possibly other transmembrane proteins.  相似文献   

12.
The E5 polypeptide of bovine papillomavirus type 1 is a small membrane-bound protein which induces the transformation of immortalized fibroblasts, apparently via the formation of a ternary complex with the platelet-derived growth factor receptor (PDGFR) and the 16-kDa V-ATPase protein. This interaction seems to be mediated, at least in part, by their respective transmembrane domains. E5 also cooperates with transfected beta PDGFR to induce interleukin-3 (IL-3)-independent growth of a mouse myeloid precursor cell line (32D) which normally lacks expression of most known tyrosine kinase growth factor receptors. Cell proliferation induced by beta PDGFR and E5 is also highly specific, since the highly conserved alpha PDGFR and other related receptors did not physically or functionally interact with E5 in these cells. In the current study, analysis of chimeric alpha and beta PDGFRs confirmed that a short region encompassing the beta PDGFR transmembrane domain was sufficient for complex formation with E5, receptor autophosphorylation, and sustained proliferation of 32D cells in the absence of IL-3. Furthermore, a deletion mutant lacking the entire extracellular domain efficiently bound E5 and induced IL-3-independent growth. These data provide direct evidence that the interaction between E5 and the beta PDGFR involves amino acids 531 to 556 of the receptor transmembrane region and that this specific interaction is critical for activation of the PDGFR signaling complex.  相似文献   

13.
Fibroblast growth factor receptors (FGFRs) are a family of transmembrane tyrosine kinases involved in signaling via interactions with the family of fibroblast growth factors. Alternative splicing of the juxtamembrane region of FGFR1-3 leads to the inclusion or exclusion of two amino acids, valine and threonine, the VT site. The presence or absence of VT (VT+ or VT-, respectively) affects the signaling potential of the receptor. The VT+ receptor isoform is required for Erk2 phosphorylation, a component of the mitogen-activated protein kinase signaling pathway. FRS2 is an adaptor protein that links FGFRs to the mitogen-activated protein kinase signaling pathway. FRS2 interacts with a region of the juxtamembrane domain of FGFR1 that includes the alternatively spliced VT site. We investigated the interaction of FRS2 with murine Fgfr1 juxtamembrane domain. We showed the alternatively spliced VT motif, at the juxtamembrane domain of Fgfr1 is required for FRS2 interaction with Fgfr1. Activation of signaling pathways from FRS2 is likely to be regulated by controlling the Fgfr1/FRS2 interaction through alternative splicing of the VT motif of Fgfr1.  相似文献   

14.
The platelet-derived growth factor β-receptor (PDGFβR) represents an important subclass of receptor tyrosine kinase (RTK) thought to be activated by ligand-induced dimerization. Interestingly, the receptor is also activated by the bovine papillomavirus E5 oncoprotein, an interaction involving the transmembrane domains of both proteins and resulting in constitutive downstream signalling. This unique mode of activation along with emerging data for other RTKs raises important questions about the role of the PDGFβR transmembrane domain in signalling. To address this, we have investigated the murine PDGFβR transmembrane and juxtamembrane domains. We show for the first time the strong oligomerization behavior of PDGFβR transmembrane domain, forming dimers and trimers in natural membranes and detergents; and that these self-interactions are mediated by a leucine-zipper-like motif. The juxtamembrane regions are found to regulate these helix-helix interactions and select specifically for dimer formation. These data provide evidence that PDGFβR is able to form ligand-independent dimers, supporting similar observations in a number of other RTK's. A point mutant in the PDGFβR juxtamembrane domain previously shown to cause receptor activation was studied and yielded no change in oligomerization or folding, suggesting (in-line with observations of the c-Kit receptor) that it may moderate interactions with other regions of PDGFβR.  相似文献   

15.
The small transmembrane E5 protein of bovine papillomavirus (BPV) transforms cells by forming a stable complex with and activating the platelet-derived growth factor beta receptor (PDGFbetaR). The E5/PDGFbetaR interaction is thought to involve specific physical contacts between the transmembrane domains of the two proteins. Lys(499) at the extracellular juxtamembrane position and Thr(513) within the transmembrane domain of the PDGFbetaR are required for the interaction and are predicted to contact analogously positioned residues in the E5 protein. Here, mutagenic analysis of the transmembrane region of the PDGFbetaR was performed to further characterize the nature of the E5/PDGFbetaR interaction. We show that the receptor transmembrane domain, with minimal extracellular and intracellular sequence, is sufficient for the interaction. In addition, we provide evidence that the polar nature of Thr(513) as well as its positioning along the transmembrane alpha-helix is important for the interaction. We also identify the receptor transmembrane amino acids Ile(506) and Leu(520) as additional requirements for the interaction. Because Lys(499), Thr(513), Ile(506), and Leu(520) all align along the same face of the predicted PDGFbetaR transmembrane alpha-helix, our data support the model that the PDGFbetaR contacts the E5 protein via multiple amino acids along a single alpha-helical interface.  相似文献   

16.
The bovine papillomavirus E5 protein binds to the cellular platelet-derived growth factor (PDGF) beta receptor, resulting in constitutive activation of the receptor and cell growth transformation. By subjecting extracts from E5-transformed or PDGF-treated cells to velocity sedimentation in sucrose gradients, activated PDGF beta receptor complexes were separated from monomeric, inactive receptor. Rapidly sedimenting activated complexes contained oligomeric (apparently dimeric), tyrosine-phosphorylated PDGF beta receptor, the E5 protein, and associated cellular signaling proteins including the p85 subunit of phosphoinositol 3'-kinase, phospholipase Cgamma, and Ras-GTPase activating protein. These signaling proteins made the major contribution to the increased sedimentation rate of the activated receptor complexes. Pairwise analysis of components of these complexes indicated that multiple signaling proteins and the E5 protein were simultaneously present in the activated complexes. Our results also showed that the E5 protein and PDGF activated only a small fraction of the total PDGF beta receptor, that not all receptor molecules associated with the E5 protein were tyrosine-phosphorylated, and that signaling proteins could bind to hemiphosphorylated receptor dimers. On the basis of these results, we propose a model for the assembly of multiprotein, activated PDGF beta receptor complexes in response to the E5 protein.  相似文献   

17.
L Petti  D DiMaio 《Journal of virology》1994,68(6):3582-3592
The E5 protein of bovine papillomavirus is a 44-amino-acid membrane protein which induces morphologic and tumorigenic transformation of fibroblasts. We previously showed that the E5 protein activates and forms a complex with the endogenous beta receptor for platelet-derived growth factor (PDGF) in transformed rodent fibroblasts and that the PDGF beta receptor can mediate tumorigenic transformation by the E5 protein in a heterologous cell system. Other workers have identified the receptor for epidermal growth factor (EGF) as a potential target of the E5 protein in NIH 3T3 cells. Here, we investigate the specificity of the interaction of the E5 protein with various growth factor receptors, with particular emphasis on the PDGF beta receptor and the EGF receptor. Under conditions where both the PDGF beta receptor and the EGF receptor are stably expressed in E5-transformed mouse and bovine fibroblasts and in E5-transformed epithelial cells, the E5 protein specifically forms a complex with and activates the PDGF receptor and not the EGF receptor. Under conditions of transient overexpression in COS cells, the E5 protein has the potential to associate with several growth factor receptors, including the EGF receptor. However, upon coexpression of PDGF beta receptors and EGF receptors in COS cells, the E5 protein preferentially forms a complex with the PDGF receptor. Therefore, we conclude that the PDGF beta receptor is the primary target for the E5 protein in a variety of cell types, including bovine fibroblasts.  相似文献   

18.
The E5 oncoprotein of bovine papillomavirus type 1 is a 44 amino acid, highly hydrophobic protein that induces the stable transformation of immortalized murine fibroblasts, presumably through its activation of growth factor receptors. Previous studies have shown that the E5 protein complexes with the 16 kDa (16k) pore-forming protein of vacuolar H(+)-ATPases. This integral membrane protein is essential for the acidification and function of subcellular compartments that process growth factor receptors. Using an SV40 expression system in COS cells, we analyzed whether the E5-16k complexes bind additional cellular proteins, including growth factor receptors. These studies demonstrate that E5 binds to both the 16k protein and the PDGF receptor and that this tri-component complex can be isolated with antibodies specific for each protein. Importantly, the 16k protein bound to the PDGF receptor in the absence of E5, suggesting that E5 binds to the PDGF receptor via its interaction with the 16k protein. An E5 mutant lacking the hydrophilic carboxyl-terminal 14 amino acids retained binding to both 16k and the PDGF receptor, indicating that E5 binds to these proteins through its hydrophobic, membrane-associating domain. These studies reveal that hydrophobic, intramembrane interactions govern the association of E5, 16k and the PDGF receptor, suggesting a ligand-independent mechanism for receptor activation and a potential link between receptor signal transduction pathways and membrane pore activity.  相似文献   

19.
We showed previously that the beta receptor for platelet-derived growth factor (PDGF) is constitutively activated in fibroblasts transformed by the 44-amino-acid bovine papillomavirus type 1 (BPV) E5 protein and that the E5 protein and the PDGF receptor exist in a stable complex in E5-transformed fibroblasts. On the basis of these results, we proposed that activation of the PDGF receptor by the BPV E5 protein generates a sustained proliferative signal, resulting in fibroblast transformation. In this study, we used a gene transfer approach to provide functional evidence that the PDGF receptor can mediate transformation by the E5 protein. We show that normal mouse mammary gland (NMuMG) cells, a murine mammary epithelial cell line that does not express PDGF receptors, are not susceptible to transformation by the E5 protein. Coexpression of the PDGF beta receptor and E5 genes in these cells results in markedly increased tyrosine phosphorylation of an immature PDGF receptor species and the formation of a stable complex between the E5 protein and this immature PDGF receptor form. Importantly, introduction of the PDGF receptor gene into NMuMG cells renders them highly susceptible to E5-mediated tumorigenic transformation. In contrast, the E5 protein does not induce transformation via the endogenous epidermal growth factor receptor pathway in these cells. These results demonstrate that the PDGF receptor, a cellular protein with a well-characterized role in the positive control of cell proliferation, can mediate transformation by a DNA virus transforming protein.  相似文献   

20.
P M Irusta  D DiMaio 《The EMBO journal》1998,17(23):6912-6923
Platelet-derived growth factor beta receptor (PDGFbetaR) is a transmembrane receptor tyrosine kinase involved in a variety of cellular functions. We have generated a constitutively activated murine PDGFbetaR containing a valine to alanine substitution at residue 536, located in the cytoplasmic juxtamembrane domain. When this mutant receptor (PR-V536A) was expressed in Ba/F3 cells, it allowed the cells to survive and proliferate in the absence of IL-3 or PDGF, and tyrosine phosphorylation of PR-V536A was increased markedly compared with that of the wild-type PDGFbetaR in the absence of ligand and similar to that observed in ligand-activated PDGFbetaR. PR-V536A displayed increased tyrosine kinase activity in vitro toward an exogenous substrate, and the tyrosine kinase activity of the receptor was required for the constitutive activation of the mutant. This valine to alanine substitution also activated a PDGFbetaR mutant unable to bind PDGF. Alanine substitutions at positions homologous to V536 of the murine PDGFbetaR also activated other members of the PDGF receptor subfamily. The amino acid sequence of this region revealed a strong similarity to WW domains present in other signal transduction proteins. Furthermore, GST fusion proteins containing the juxtamembrane region of the PDGFR specifically associated with peptides containing the WW domain consensus recognition sequence PPXY. The results suggest that the cytoplasmic juxtamembrane domain plays a role in the regulation of receptor activity and function, perhaps by participating in protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号