首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport.  相似文献   

2.
Rho GTPases are common targets of bacterial toxins and type III secretion system effectors. IpgB1 and IpgB2 of Shigella and Map of enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli were recently grouped together on the basis that they share a conserved WxxxE motif. In this study, we characterized six WxxxE effectors from attaching and effacing pathogens: TrcA and EspM1 of EPEC strain B171, EspM1 and EspM2 of EHEC strain Sakai and EspM2 and EspM3 of Citrobacter rodentium . We show that EspM2 triggers formation of global parallel stress fibres, TrcA and EspM1 induce formation of localized parallel stress fibres and EspM3 triggers formation of localized radial stress fibres. Using EspM2 and EspM3 as model effectors, we report that while substituting the conserved Trp with Ala abolished activity, conservative Trp to Tyr or Glu to Asp substitutions did not affect stress-fibre formation. We show, using dominant negative constructs and chemical inhibitors, that the activity of EspM2 and EspM3 is RhoA and ROCK-dependent. Using Rhotekin pull-downs, we have shown that EspM2 and EspM3 activate RhoA; translocation of EspM2 and EspM3 triggered phosphorylation of cofilin. These results suggest that the EspM effectors modulate actin dynamics by activating the RhoA signalling pathway.  相似文献   

3.
Eukaryotic cells possess two extensive endomembrane systems, each consisting of several sub-compartments connected by vesicular trafficking. One of these systems, the endocytic pathway, serves incoming traffic, and the other system, the secretory pathway (SP), is responsible for surface-bound traffic of intracellularly formed vesicles. Compartments derived of either system can be colonized by intracellular pathogens. In this review, we discuss the interactions between the SP and prominent intracellular bacterial pathogens of the genera Legionella, Brucella, Chlamydia and Salmonella. We emphasize secreted bacterial effector proteins, which directly manipulate host components of this pathway.  相似文献   

4.
Salmonella typhimurium is a facultative intracellular pathogen that colonizes host cells throughout the course of infection. A unique feature of this pathogen is its ability to enter into (invade) epithelial cells and elongate the vacuole within which it resides into tubular structures called Salmonella-induced filaments (Sifs). In this study we sought to characterize the mechanism of Sif formation by immunofluorescence analysis using subcellular markers. The late endosomal lipid lysobisphosphatidic acid associated in a punctate pattern with the Salmonella-containing vacuole, starting 90 min after infection and increasing thereafter. Lysobisphosphatidic acid-rich vesicles were also found to interact with Sifs, at numerous sites along the tubules. Similarly, cholesterol-rich vesicles were also found in association with intracellular bacteria and Sifs. The lysosomal hydrolase cathepsin D was present in Sifs, both in a punctate pattern and, at later times, predominantly in an uninterrupted linear pattern. Rab7 associated with Sifs and expression of the N125I dominant negative mutant of this GTPase inhibited Sif formation. Transfection of HeLa cells with a vector encoding SifA fused to the green fluorescent protein caused swelling and aggregation of lysobisphosphatidic acid-containing compartments, suggesting that this virulence factor directs membrane fusion events involving late endosomes. Our findings demonstrate that Sif formation involves fusion of late endocytic compartments with the Salmonella-containing vacuole, and suggest that SifA modulates this event.  相似文献   

5.
A unique feature of Salmonella enterica serovar typhimurium ( S. typhimurium ) is its ability to enter into (invade) epithelial cells and elongate the vacuole it occupies into tubular structures called Salmonella -induced filaments (Sifs). This phenotype is dependent on SifA, a Salmonella virulence factor that requires the SPI-2-encoded type III secretion system for delivery into host cells. Previous attempts to study SifA and other type III secreted proteins have been limited by a lack of suitable reagents. We examined SifA function by expressing SifA with two internal hemagglutinin epitope tags. By employing subcellular fractionation techniques, we determined that translocated SifA was membrane associated in infected HeLa cells. Confocal microscopy revealed that SifA associated with the Salmonella vacuole and with Sifs. Our analysis also revealed that microtubules serve as a scaffold for Sifs, and that SifA colocalizes with microtubules at sites of interaction between lysosomal glycoprotein-containing vesicles and Sifs. Treatment with the microtubule inhibitor nocodazole blocked Sif formation but did not prevent SifA translocation into the Salmonella vacuole. While polymerized actin has been observed on Sifs, this phenotype was transient and did not play a role in promoting or maintaining Sif formation. Our findings demonstrate the essential role of microtubule dynamics in the formation of Sifs and the utility of this epitope tagging strategy for the study of bacterial type III secreted proteins.  相似文献   

6.
Salmonella typhimurium is a facultative intracellular pathogen that utilizes two type III secretion systems to deliver virulence proteins into host cells. These proteins, termed effectors, alter host cell function to allow invasion into and intracellular survival/replication within a vacuolar compartment. Here we describe SopD2, a novel member of the Salmonella translocated effector (STE) family, which share a conserved N-terminal type III secretion signal. Disruption of the sopD2 gene prolonged the survival of mice infected with a lethal dose of Salmonella typhimurium , demonstrating a significant role for this effector in pathogenesis. Expression of sopD2 was induced inside host cells and was dependent on functional ssrA/B and phoP/Q, two component regulatory systems. HA-tagged SopD2 was delivered into HeLa cells in a SPI-2-dependent manner and associated with both the Salmonella -containing vacuole and with swollen endosomes elsewhere in the cell. Subcellular fractionation confirmed that SopD2 was membrane associated in host cells, while the closely related effector SopD was localized to the cytosol. A SopD2 fusion to GFP associated with small tubular structures and large vesicles containing late endocytic markers, including Rab7. Surprisingly, expression of N-terminal amino acids 1–150 of SopD2 fused to GFP was sufficient to mediate both binding to late endosomes/lysosomes and swelling of these compartments. These findings demonstrate that the N-terminus of SopD2 is a bifunctional domain required for both type III secretion out of Salmonella as well as late endosome/lysosome targeting following translocation into host cells .  相似文献   

7.
Salmonella enterica, the causative agent of food poisoning and typhoid fever, induces programmed cell death in macrophages, a process found to be dependent on a type III protein secretion system, and SipB, a protein with membrane fusion activity that is delivered into host cells by this system. When expressed in cultured cells, SipB caused the formation of and localized to unusual multimembrane structures. These structures resembled autophagosomes and contained both mitochondrial and endoplasmic reticulum markers. A mutant form of SipB devoid of membrane fusion activity localized to mitochondria, but did not induce the formation of membrane structures. Upon Salmonella infection of macrophages, SipB was found in mitochondria, which appeared swollen and devoid of christae. Salmonella-infected macrophages exhibited marked accumulation of autophagic vesicles. We propose that Salmonella, through the action of SipB, kills macrophages by disrupting mitochondria, thereby inducing autophagy and cell death.  相似文献   

8.
Intracellular replication of Salmonella enterica requires the formation of a unique organelle termed Salmonella-containing vacuole (SCV). The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2-T3SS) has a crucial role in the formation and maintenance of the SCV. The SPI2-T3SS translocates a large number of effector proteins that interfere with host cell functions such as microtubule-dependent transport. We investigated the function of the effector SseF and observed that this protein is required to maintain the SCV in a juxtanuclear position in infected epithelial cells. The formation of juxtanuclear clusters of replicating Salmonella required the recruitment of dynein to the SCV but SseF-deficient strains were highly reduced in dynein recruitment to the SCV. We performed a functional dissection of SseF and defined domains that were important for translocation and the specific effector functions of this protein. Of particular importance was a hydrophobic domain in the C-terminal half that contains three putative transmembrane (TM) helices. Deletion of one of these TM helices ablated the effector functions of SseF. We observed that this domain was essential for the proper intracellular positioning of the SCV to a juxtanuclear, Golgi-associated localization. These data show that SseF, in concert with the effector proteins SifA and SseG mediate the precise positioning of the SCV by differentially modulating the recruitment of microtubule motor proteins to the SCV.  相似文献   

9.
Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens.  相似文献   

10.
11.
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors.  相似文献   

12.
Bacterial pathogens use type III secretion systems (TTSSs) to deliver virulence factors into eukaryotic cells. These effectors perturb host-defence responses, especially signal transduction pathways. A functional TTSS was identified in the symbiotic, nitrogen-fixing bacterium Rhizobium sp. NGR234. NopL (formerly y4xL) of NGR234 is a putative symbiotic effector that modulates nodulation in legumes. To test whether NopL could interact with plant proteins, in vitro phosphorylation experiments were performed using recombinant nopL protein purified from Escherichia coli as well as protein extracts from Lotus japonicus and tobacco plants. NopL serves as a substrate for plant protein kinases as well as purified protein kinase A. Phosphorylation of NopL was inhibited by the Ser/Thr kinase inhibitor K252a as well as by PD98059, a mitogen-activated protein (MAP) kinase kinase inhibitor. It thus seems likely that, after delivery into the plant cell, NopL modulates MAP kinase pathways.  相似文献   

13.
《Molecular cell》2022,82(24):4712-4726.e7
  1. Download : Download high-res image (272KB)
  2. Download : Download full-size image
  相似文献   

14.
Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼500 different kinases and ∼130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.  相似文献   

15.
16.
17.
18.
Fronzes R  Remaut H  Waksman G 《The EMBO journal》2008,27(17):2271-2280
Bacteria commonly expose non-flagellar proteinaceous appendages on their outer surfaces. These extracellular structures, called pill or fimbriae, are employed in attachment and invasion, biofilm formation, cell motility or protein and DNA transport across membranes. Over the past 15 years, the power of molecular and structural techniques has revolutionalized our understanding of the biogenesis, structure, function and mode of action of these bacterial organelles. Here, we review the five known classes of Gram-negative non-flagellar appendages from a biosynthetic and structural point of view.  相似文献   

19.
Yersinia type III secretion: send in the effectors   总被引:26,自引:0,他引:26       下载免费PDF全文
Pathogenic Yersinia spp (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) have evolved an exquisite method for delivering powerful effectors into cells of the host immune system where they inhibit signaling cascades and block the cells' response to infection. Understanding the molecular mechanisms of this system has provided insight into the processes of phagocytosis and inflammation.  相似文献   

20.
孙思  牛建军  王岱 《微生物学报》2017,57(10):1452-1460
三型分泌系统(Type 3 secretion system,T3SS)作为存在于革兰氏阴性菌中的分泌系统之一,对革兰氏阴性菌的致病有重要作用。T3SS的致病作用体现在T3SS能直接将效应蛋白转运至宿主细胞,进而通过效应蛋白调控细胞的一系列通路,促进细菌定殖于细胞。而效应蛋白的转运受到两方面因素的调控,一方面是效应蛋白本身的信号序列,另一方面是T3SS相关蛋白的辅助。本文围绕近年来T3SS的构成、效应蛋白转运机制方面的最新进展进行概要综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号