首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The role of the aristaless-related homeobox gene Alx4 in antero-posterior (AP-) patterning of the developing vertebrate limb has remained somewhat elusive. Polydactyly of Alx4 mutant mice is known to be accompanied by ectopic anterior expression of genes like Shh, Fgf4 and 5'Hoxd. We reported previously that polydactyly in Alx4 mutant mice requires SHH signaling, but we now show that in early Alx4-/- limb buds the anterior ectopic expression of Fgf4 and Hoxd13, and therefore disruption of AP-patterning, occurs independently of SHH signaling. To better understand how Alx4 functions in the pathways that regulate AP-patterning, we also studied genomic regulatory sequences that are capable of directing expression of a reporter gene in a pattern corresponding to endogenous Alx4 expression in anterior limb bud mesenchyme. We observed, as expected for authentic Alx4 expression, expansion of reporter construct expression in a Shh-/- background. Total lack of reporter expression in a Gli3-/- background confirms the existence of Gli3-dependent and -independent Alx4 expression in the limb bud. Apparently, these two modules of Alx4 expression are linked to dissimilar functions.  相似文献   

7.
The role of Hox genes during vertebrate limb development   总被引:3,自引:0,他引:3  
The potential role of Hox genes during vertebrate limb development was brought into focus by gene expression analyses in mice (P Dolle, JC Izpisua-Belmonte, H Falkenstein, A Renucci, D Duboule, Nature 1989, 342:767-772), at a time when limb growth and patterning were thought to depend upon two distinct and rather independent systems of coordinates; one for the anterior-to-posterior axis and the other for the proximal-to-distal axis (see D Duboule, P Dolle, EMBO J 1989, 8:1497-1505). Over the past years, the function and regulation of these genes have been addressed using both gain-of-function and loss-of-function approaches in chick and mice. The use of multiple mutations either in cis-configuration in trans-configuration or in cis/trans configurations, has confirmed that Hox genes are essential for proper limb development, where they participate in both the growth and organization of the structures. Even though their molecular mechanisms of action remain somewhat elusive, the results of these extensive genetic analyses confirm that, during the development of the limbs, the various axes cannot be considered in isolation from each other and that a more holistic view of limb development should prevail over a simple cartesian, chess grid-like approach of these complex structures. With this in mind, the functional input of Hox genes during limb growth and development can now be re-assessed.  相似文献   

8.
9.
Aristaless-related proteins are structurally defined by the presence of a paired-type homeodomain and an additional conserved domain, known as aristaless domain or OAR-domain. These proteins can be further categorized in three groups (Int. J. Dev. Biol., 43 (1999) 651). Group-I aristaless-related genes are linked to functions in the development of the craniofacial and appendicular skeleton and are expressed predominantly in the mesenchyme in stages from gastrulation through at least mid-gestation (Mech. Dev., 48 (1994) 245; Mech. Dev., 52 (1995) 51; Development, 124 (1997) 3999; Dev. Biol., 199 (1998) 11; Development, 126 (1999) 495). In view of the highly redundant character of the functions of these genes in patterning craniofacial and limb structures, we found it important to directly compare their expression patterns at critical stages of craniofacial and limb development.  相似文献   

10.
11.
12.
13.
14.
Gli proteins and Hedgehog signaling: development and cancer.   总被引:8,自引:0,他引:8  
  相似文献   

15.
16.
17.
The vasculature and limb development   总被引:2,自引:0,他引:2  
The developing vascular pattern of the embryonic chick limb results from a combination of two properties: the intrinsic self-assembly and branching properties of the vascular cells and the extrinsic information associated with the expanding mitotic population of mesenchymal cells; and the inhibitory factors which restrict the entrance of vessels into particular domains and/or decrease the branching frequency of such vessels. It is hypothesized that an important component of limb pattern formation is the interplay between the dividing population of mesenchymal cells and the intrinsic properties of the vascular cells. It is further asserted that the presence of particular vascular elements may, indeed, be 'positional information'. Two examples are cited involving aspects of limb duplication to support this possibility; it is suggested that vascular vessel size of a host limb may dictate the polarity of duplication events. The presented hypothesis emphasizes that the interplay between the intrinsic properties of self-assembly into tissues and extrinsic factors which establish boundaries and morphologies is involved in both vascular and limb pattern formation.  相似文献   

18.
Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal determinant genes Meis1 and Meis2. RA promotes proximalization of limb cells and endogenous RA signaling is required to maintain the proximal Meis domain in the limb. RA synthesis and signaling range, which initially span the entire lateral plate mesoderm, become restricted to proximal limb domains by the apical ectodermal ridge (AER) activity following limb initiation. We identify fibroblast growth factor (FGF) as the main molecule responsible for this AER activity and propose a model integrating the role of FGF in limb cell proliferation, with a specific function in promoting distalization through inhibition of RA production and signaling.  相似文献   

19.
Mice homozygous for targeted disruption of the zinc finger domain of Gli2 (Gli2(zfd/zfd)) die at birth with developmental defects in several organ systems including the skeleton. The current studies were undertaken to define the role of Gli2 in endochondral bone development by characterizing the molecular defects in the limbs and vertebrae of Gli2(zfd/zfd) mice. The bones of mutant mice removed by cesarian section at E16.5 and E18.5 demonstrated delayed endochondral ossification. This was accompanied by an increase in the length of cartilaginous growth plates, reduced bone tissue in the femur and tibia and by failure to develop the primary ossification centre in vertebral bodies. The growth plates of tibiae and vertebrae exhibited increased numbers of proliferating and hypertrophic chondrocytes with no apparent alteration in matrix mineralisation. The changes in growth plate morphology were accompanied by an increase in expression of FGF2 in proliferating chondrocytes and decreased expression of Indian hedgehog (Ihh), patched (Ptc) and parathyroid-hormone-related protein (PTHrP) in prehypertrophic cells. Furthermore, there was a reduction in expression of angiogenic molecules in hypertrophic chondrocytes, which was accompanied by a decrease in chondroclasts at the cartilage bone interface, fewer osteoblasts lining trabecular surfaces and a reduced volume of metaphyseal bone. These results indicate that functional Gli2 is necessary for normal endochondral bone development and that its absence results in increased proliferation of immature chondrocytes and decreased resorption of mineralised cartilage and bone formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号