首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonamer 5'd(CTCAGCCTC) 3' 1 has been reacted with cis-diamminediaquaplatinum(II) in water at pH 4.2. The major reaction product was shown by enzymatic digestion and 1H NMR to be the d(ApG)cis-Pt(NH3)2 chelate [cis-Pt(NH3)2[d(CTCAGCCTC)-N7(4),N7(5)]] 1-Pt. When mixed with its complementary strand 2, 1-Pt forms a B DNA type duplex 3-Pt with a Tm of 35 degrees C (versus 58 degrees C for the unplatinated duplex). The NMR study of the exchangeable protons of 3-Pt revealed that the helix distortion is localized on the CA*G*-CTG moiety (the asterisks indicating the platinum chelation sites) with a strong perturbation of the A*(4)T(15) base pair related to a large tilt of A*(4).  相似文献   

2.
We have used high-resolution NMR spectroscopy and molecular dynamics simulations to determine the solution structure of DNA containing the genotoxic lesion 1, N (2)-etheno-2'-deoxyguanosine (epsilonG), paired to dC. The NMR data suggest the presence of a major, minimally perturbed structure at neutral pH. NOESY spectra indicate the presence of a right-handed helix with all nucleotides in anti, 2'-deoxyribose conformations within the C2'-endo/C1'-exo range and proper Watson-Crick base pair alignments outside the lesion site. The epsilonG residue remains deeply embedded inside the helix and stacks between the flanking base pairs. The lesion partner dC is extrahelical and is located in the minor groove of the duplex, where it is highly exposed to solvent. Upon acidification of the sample, a second conformation at the lesion site of the duplex emerges, with protonation of the lesion partner dC and possible formation of a Hoogsteen base pair. Restrained molecular dynamics simulations of the neutral-pH structure generated a set of three-dimensional models that show epsilonG inside the helix, where the lesion is stabilized by stacking interactions with flanking bases but without participating in hydrogen bonding. The lesion counterbase dC is displaced in the minor groove of the duplex where it can form a hydrogen bond with the sugar O4' atom of a residue 2 bp away.  相似文献   

3.
Tisné C  Hartmann B  Delepierre M 《Biochemistry》1999,38(13):3883-3894
We present the solution structure of the nonpalindromic 16 bp DNA 5'd(CTGCTCACTTTCCAGG)3'. 5'd(CCTGGAAAGTGAGCAG)3' containing a mutated kappaB site for which the mutation of a highly conserved GGG tract of the native kappaB HIV-1 site to CTC abolishes NF-kappaB binding. 1H and 31P NMR spectroscopies have been used together with molecular modeling to determine the fine structure of the duplex. NMR data show evidence for a BI-BII equilibrium of the CpA.TpG steps at the 3'-end of the oligomer. Models for the extreme conformations reached by the mutated duplex (denoted 16M) are proposed in agreement with the NMR data. Since the distribution of BII sites is changed in the mutated duplex compared to that of the native duplex (denoted 16N), large differences are induced in the intrinsic structural properties of both duplexes. In particular, in BII structures, 16M shows a kink located at the 3'-end of the duplex, and in contrast, 16N exhibits an intrinsic global curvature toward the major groove. Whereas 16N can reach a conformation very favorable for the interaction with NF-kappaB, 16M cannot mimic such a conformation and, moreover, its deeper and narrower major groove could hinder the DNA-protein interactions.  相似文献   

4.
Nitrous acid is a mutagenic agent. It can induce interstrand cross-links in duplex DNA, preferentially at d(CpG) steps: two guanines on opposite strands are linked via a single shared exocyclic imino group. Recent synthetic advances have led to the production of large quantities of such structurally homogenous cross-linked duplex DNA. Here we present the high resolution solution structure of the cross-linked dodecamer [d(GCATCCGGATGC)]2 (the cross-linked guanines are underlined), determined by 2D NMR spectroscopy, distance geometry, restrained molecular dynamics and iterative NOE refinement. The cross-linked guanines form a nearly planar covalently linked 'G:G base pair' with only minor propeller twisting, while the cytidine bases of their normal base pairing partners have been flipped out of the helix and adopt well defined extrahelical positions in the minor groove. On the 5'-side of the cross-link, the minor groove is widened to accommodate these extrahelical bases, and the major groove becomes quite narrow at the cross-link. The cross-linked 'G:G base pair' is well stacked on the spatially adjacent C:G base pairs, particularly on the 3'-side guanines. In addition to providing the first structure of a nitrous acid cross-link in DNA, these studies could be of major importance to the understanding of the mechanisms of nitrous acid cross-linking and mutagenicity, as well as the mechanisms responsible for its repair in intracellular environments. It is also the shortest DNA cross-link structure to be described.  相似文献   

5.
E Trotta  M Paci 《Nucleic acids research》1998,26(20):4706-4713
The solution structure of the complex between 4', 6-diamidino-2-phenylindole (DAPI) and DNA oligomer [d(GCGATTCGC)]2, containing a central T.T mismatch, has been characterized by combined use of proton one- and two-dimensional NMR spectroscopy, molecular mechanics and molecular dynamics computations including relaxation matrix refinement. The results show that the DAPI molecule binds in the minor groove of the central region 5'-ATT-3' of the DNA oligomer, which predominantly adopts a duplex structure with a global right-handed B-like conformation. In the final models of the complex, the DAPI molecule is located nearly isohelical with its NH indole proton oriented towards the DNA helix axis and forming a bifurcated hydrogen bond with the carbonyl O2 groups of a mismatched T5 and the T6 residue of the opposite strand. Mismatched thymines adopt a wobble base pair conformation and are found stacked between the flanking base pairs, inducing only minor local conformational changes in global duplex structure. In addition, no other binding mechanisms were observed, showing that minor groove binding of DAPI to the mismatch-containing site is favoured in comparison with any other previously reported interaction with G.C sequences.  相似文献   

6.
Solution structure of an oncogenic DNA duplex containing a G.A mismatch   总被引:7,自引:0,他引:7  
The DNA duplex 5'-d(GCCACAAGCTC).d(GAGCTGGTGGC), which contains a central G.A mismatch has been studied by one and two-dimensional NMR techniques. The duplex corresponds to the sequence 29-39 of the K-ras gene. The mismatch position is that of the first base of the Gly12 codon, a hot spot for mutations. The observed NOEs of the nonexchangeable protons show that both of the bases of the mismatched pair are intrahelical over a wide range of pH. However, the structure of the G.A mispair and the conformation of the central part of the duplex change with pH. This structural change shows a pK of 6.0. At low pH, the G.A bases are base paired with hydrogen bonds between the keto group of the G residue and the amino group of the A residue and, secondly, between the N7 of the G and a proton on N1 of A. This causes the G residue to adopt a syn conformation. On raising the pH, the N1-H proton of the protonated A residue is removed, and the base pair rearranges. In the neutral G.A base pair both residues adopt an anti conformation, and the mismatch is stabilized by hydrogen bonds. Our results on the exchangeable and A(H2) protons of the mismatched pair indicate a shift from a classical face-to-face two hydrogen-bonded structure to a slipped structure stabilized by bifurcated hydrogen bonds. This may be a particular characteristics of this oncogenic sequence in which the G.A error is poorly repaired.  相似文献   

7.
The concept of the 1H-NMR window has been developed and examined through a comparative study of NOESY spectra of a self-complementary Dickerson's dodecamer (I) [5'd(5C6G7C8G9A10A11T12T13C-14G15C16G)2(3')], a self-complementary 20-mer (II) [(5'd(1C2G3C4G5C6G7C8G9A10A11T12T13C14G15C16G17C18G19C20G)2(3')] in which the core part consists of the same Dickerson's dodecamer sequence with the flanking CGCG residues at both 3' and 5'-ends, and the partly-deuteriated (shown by underlined CGCG residues at both 3' and 5'-ends) analogous duplex (III) [5'd(1C2G3C4G5C6G7C8G9A10A11T12T13C14G15C16G17C18G19C20G)2(3')] in which the core 5C to 16G part (i.e. 1H-NMR window) consists of the natural Dickerson's dodecamer sequence. A comparison of their NOESY spectra clearly demonstrates that the severe overlap of proton resonances in the larger DNA duplex (II) has been successfully reduced in the partly-deuterated duplex (III) as a result of specific incorporations of the sugar-deuteriated nucleotide residues in the latter [stereospecific > 97 atom % 2H enrichment at H2', H2' and H3' sites, approximately 85 atom % 2H enrichment at H4' and approximately 20 atom % 2H enrichment at H1' (see refs. 10 and 11) in the 20-mer duplex (III)]. These simplifications of the resonance overlap by the deuteriation approach have enabled unequivocal chemical shift assignments and extraction of the quantitative NOE data in the 1H-NMR window part of duplex (III). A comparison of the 12-nucleotide long 1H-NMR window in (III) with that of the 12-mer duplex (I) also shows the scope of studying the changes in conformation and dynamics of the core 12-mer region in (III) which result from the increase of molecular weight due to the DNA chain extension. It is noteworthy that such a study is clearly impossible for the natural 20-mer (II) because of the inherent problem of the overlap of resonances.  相似文献   

8.
This paper reports on a combined two-dimensional NMR and energy minimization computational characterization of the conformation of the N-(deoxyguanosyl-8-yl)aminofluorene adduct [(AF)G] positioned across adenosine in a DNA oligomer duplex as a function of pH in aqueous solution. This study was undertaken on the d[C1-C2-A3-T4-C5-(AF)G6-C7-T8-A9-C10-C11].[G12-G13-T14 -A15-G16-A17-G18- A19-T20-G21-G22] complementary undecamer [(AF)G 11-mer duplex]. The modification of the single G6 on the pyrimidine-rich strand was accomplished by reaction of the oligonucleotide with N-acetoxy-2-(acetylamino)fluorene and subsequent deacetylation under alkaline conditions. The HPLC-purified modified strand was annealed with the unmodified purine-rich strand to generate the (AF)G 11-mer duplex. The exchangeable and nonexchangeable protons are well resolved and narrow in the NMR spectra of the (AF)G 11-mer duplex so that the base and the majority of sugar nucleic acid protons, as well as several aminofluorene ring protons, have been assigned following analysis of two-dimensional NOESY and COSY data sets at pH 6.9, 30 degrees C in H2O and D2O solution. The NOE distance constraints establish that the glycosidic torsion angle is syn at (AF)G6 and anti at A17, which results in the aminofluorene ring being positioned in the minor groove. A very large downfield shift is detected at the H2' sugar proton of (AF)G6 associated with the (AF)G6[syn].A17[anti] alignment in the (AF)G 11-mer duplex. The NMR parameters demonstrate formation of Watson-Crick C5.G18 and C7.G16 base pairs on either side of the (AF)G6[syn].A17[anti] modification site with the imino proton of G18 more stable to exchange than the imino proton of G16. Several nonexchangeable aminofluorene protons undergo large downfield shifts as do the imino and H8 protons of G16 on lowering of the pH from neutrality to acidic values for the (AF)G 11-mer duplex. Both the neutral and acidic pH conformations have been defined by assigning the NOE constraints in the [C5-(AF)G6-C7].[G16-A17-G18] segment centered about the modification site and incorporating them in distance constrained minimized potential energy calculations in torsion angle space with the DUPLEX program. A series of NOEs between the aminofluorene protons and the DNA sugar protons in the neutral pH conformation establish that the aminofluorene ring spans the minor groove and is directed toward the G16-A17-G18 sugar-phosphate backbone on the partner strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Giri I  Johnston DS  Stone MP 《Biochemistry》2002,41(17):5462-5472
The G --> T transversion is the dominant mutation induced by the cationic trans-8,9-dihydro-8-(N7-guanyl)-9-hydroxy-aflatoxin B(1) adduct. The structure of d(ACATC(AFB)GATCT).d(AGATAGATGT), in which the cationic adduct was mismatched with deoxyadenosine, was refined using molecular dynamics calculations restrained by NOE data and dihedral restraints obtained from NMR spectroscopy. Restrained molecular dynamics calculations refined structures with pairwise rmsd <1 A and a sixth root R1x factor between the refined structure and NOE data of 10.5 x 10-2. The mismatched duplex existed in a single conformation at neutral pH. The aflatoxin moiety intercalated above the 5' face of the modified (AFB)G. The mismatched dA was in the anti conformation about the glycosyl bond. It extruded toward the major groove and did not participate in hydrogen bonding with (AFB)G. The structure was compared with that of d(ACATCGATCT).d(AGATAGATGT) containing the corresponding unmodified G.A mismatch and with d(ACATC(AFB)GATCT).d(AGATCGATGT) containing the aflatoxin lesion in the correctly paired (AFB)G.C context. The correctly paired oligodeoxynucleotide exhibited Watson-Crick-type geometry at the (AFB)G.C pair. It melted at higher temperature than the mismatched (AFB)G.A duplex. The unmodified mismatched G.A duplex exhibited spectral line broadening at neutral pH, suggesting a mixture of conformations. It exhibited a lower melting temperature than did the mismatched (AFB)G.A duplex. These differences correlated with replication bypass experiments performed in vitro utilizing DNA polymerase I exo- [Johnston, D. S., and Stone, M. P. (2000) Chem. Res. Toxicol. 13, 1158-1164]. Those experiments showed that correct insertion of dC opposite (AFB)G blocked replication by the enzyme, whereas incorrect insertion of dA opposite (AFB)G allowed full-length replication of the adducted template strand.  相似文献   

10.
Spinach leaves contain a highly active nuclease called SP. The purified enzyme incises single-stranded DNA, RNA, and double-stranded DNA that has been destabilized by A-T-rich regions and DNA lesions [Strickland et al. (1991) Biochemistry 30, 9749-9756]. This broad range of activity has suggested that SP may be similar to a family of nucleases represented by S1, P1, and the mung bean nuclease. However, unlike these single-stranded nucleases that require acidic pH and low ionic strength conditions, SP has a neutral pH optimum and is active over a wide range of salt concentrations. We have extended these findings and showed that an outstanding substrate for SP is a mismatched DNA duplex. For base-substitution mismatches, SP incises at all mismatches except those containing a guanine residue. SP also cuts at insertion/deletions of one or more nucleotides. Where the extrahelical DNA loop contains one nucleotide, the preference of extrahelical nucleotide is A > T approximately C but undetectable at G. The inability of SP to cut at guanine residues and the favoring of A-T-rich regions distinguish SP from the CEL I family of neutral pH mismatch endonucleases recently discovered in celery and other plants [Oleykowski et al. (1998) Nucleic Acids Res. 26, 4597-4602]. SP, like CEL I, does not turn over after incision at a mismatched site in vitro. Similar to CEL I, the presence of a DNA polymerase or a DNA ligase allows SP to turn over and stimulate its activity in vitro by about 20-fold. The possibility that the SP nuclease may be a natural variant of the CEL I family of mismatch endonucleases is discussed.  相似文献   

11.
Structural defects, affecting T4 DNA ligase function, were revealed with the help of synthetic DNA duplexes, containing modifications at single nick. Changes of configuration at C2' and C3' atoms of furanose in the acceptor terminus lead to total blocking of the nick sealing activity of T4 DNA ligase. On the contrary, substitution of 3'-terminal deoxyribonucleotide for ribonucleotide doesn't affect the enzyme's action. The duplex looses all of it's substrate activity if the next from the nick G.C pair is substituted for the noncomplementary G.C pair. In DNA duplexes containing an unpaired base in the nick, elimination of the extrahelical nucleotide proceeds the ligation step. In these cases the duplex substrate activity decreases depending on the extent of extrahelical base stacking into the double stranded DNA.  相似文献   

12.
Giri I  Stone MP 《Biochemistry》2003,42(23):7023-7034
The structure of 5'-d(ACATC(AFB)GATCT)-3'.5'-d(AGATCAATGT)-3', containing the C(5).A(16) mismatch at the base pair 5' to the modified (AFB)G(6), was determined by NMR. The characteristic 5'-intercalation of the AFB(1) moiety was maintained. The mismatched C(5).A(16) pair existed in the wobble conformation, with the C(5) imino nitrogen hydrogen bonded to the A(16) exocyclic amino group. The wobble pair existed as a mixture of protonated and nonprotonated species. The pK(a) for protonation at the A(16) imino nitrogen was similar to that of the C(5).A(16) wobble pair in the corresponding duplex not adducted with AFB(1). Overall, the presence of AFB(1) did not interfere with wobble pair formation at the mismatched site. Molecular dynamics calculations restrained by distances derived from NOE data and torsion angles derived from (1)H (3)J couplings were carried out for both the protonated and nonprotonated wobble pairs at C(5).A(16). Both sets of calculations predicted the A(16) amino group was within 3 A of the C(5) imino nitrogen. The calculations suggested that protonation of the C(5).A(16) wobble pair should shift C(5) toward the major groove and shift A(16) toward the minor groove. The NMR data showed evidence for the presence of a minor conformation characterized by unusual NOEs between T(4) and (AFB)G(6). T(4) is two nucleotides in the 5'-direction from the modified base. These NOEs suggested that in the minor conformation nucleotide T(4) was in closer proximity to (AFB)G(6) than would be expected for duplex DNA. Modeling studies examined the possibility that T(4) transiently paired with the mismatched A(16), allowing it to come within NOE distance of (AFB)G(6). This model structure was consistent with the unusual NOEs associated with the minor conformation. The structural studies are discussed in relationship to nontargeted C --> T transitions observed 5' to the modified (AFB)G in site-specific mutagenesis experiments [Bailey, E. A., Iyer, R. S., Stone, M. P., Harris, T. M., and Essigmann, J. M. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 1535-1539].  相似文献   

13.
Oligodeoxyribonucleotides containing N6-methoxyadenine (M) have been synthesized. The order of stability of duplexes consisting of synthesized oligodeoxyribonucleotides, 5'd(CCTGGTAXCAGGTCC)3'-5'd(GGACCTGNTACCAGG)3' (X = M, A, G. N = A, G, T, C), was M: A (Tm = 52 degrees C) greater than M: T (50 degrees C) greater than M: G (48 degrees C) greater than M: C (46 degrees C) observed by thermal denaturation in a buffer of 0.01 M Na cacodylate, and 0.1 M NaCl at pH 7.0. The Tms are within a range of 6 degrees of difference, which is smaller than those of Tms of the duplexes containing A:N pairs (11 degrees) and G:N pairs (11 degrees). DNA replication study on a template-primer system, 5'd(32p-CAGCTTTCGC)3' 3'd(GTCGAAAGCGMAGTCG)5', showed that TTP and dCTP were incorporated into DNA strands at a site opposite to M by Klenow DNA polymerase, but dATP and dGTP were not.  相似文献   

14.
H C Shih  H Kassahun  C J Burrows  S E Rokita 《Biochemistry》1999,38(45):15034-15042
Nickel-dependent recognition and oxidation of guanine have been linked in part through the paramagnetic effects of nickel on the NMR of model oligonucleotide duplexes. Direct interaction between nickel and guanine N7 had originally been postulated from correlations between the efficiency of guanine oxidation and the environment surrounding its N7 position. (1)H and (31)P NMR spectra of DNA containing a single, isolated extrahelical guanine are consistent with selective binding of nickel to the N7 of this unique base over a background of nonspecific association to the phosphate backbone. The presence of a macrocyclic complex or simple salt of nickel did not detectably alter the structure of the duplex or extrahelical residue. Accordingly, nickel appeared to bind the extrahelical guanine N7 within the major groove as indicated by paramagnetic effects on the proton signals of nucleotides on the 5' but not 3' side of the nickel binding site. Similar (1)H NMR analysis of DNA containing a dynamic equilibrium of extrahelical guanine residues also suggested that the nickel complex did not affect the native distribution of structures. Oxidation of these sites by a nickel-mediated pathway consequently reflected their solvent accessibility in a general and metal-independent manner. The close proximity of the extrahelical guanines produced a composite of paramagnetic effects on each adjacent nucleotide resulting from both direct and proximal coordination of nickel.  相似文献   

15.
Assignment of the 1H and 31P NMR spectra of an extrahelical adenosine tridecamer oligodeoxyribonucleotide duplex, d(CGCAGAATTCGCG)2, has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. The downfield 31P resonance previously noted by Patel et al. (1982) has been assigned by both 17O labeling of the phosphate as well as a pure absorption phase constant-time heteronuclear 31P-1H correlated spectrum and has been associated with the phosphate on the 3' side of the extrahelical adenosine. JH3'-P coupling constants for each of the phosphates of the tridecamer were obtained from the 1H-31P J-resolved selective proton-flip 2D spectrum. By use of a modified Karplus relationship the C4-C3'-O3-P torsional angles (epsilon) were obtained. There exists a good linear correlation between 31P chemical shifts and the epsilon torsional angle. The 31P chemical shifts and epsilon torsional angles follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. Because the extrahelical adenosine significantly distorts the deoxyribose phosphate backbone conformation even several bases distant from the extrahelical adenosine, 31P chemical shifts show complex site- and sequence-specific variations. Modeling and NOESY distance-restrained energy minimization and restrained molecular dynamics suggest that the extrahelical adenosine stacks into the duplex. However, a minor conformation is also observed in the 1H NMR, which could be associated with a structure in which the extrahelical adenosine loops out into solution.  相似文献   

16.
Selective incorporation of the stereospecifically deuteriated sugar moieties (> 97 atom % 2H enhancements at H2', H2', H3' and H5'/5' sites, approximately 85 atom % 2H enhancement at H4' and approximately 20 atom % 2H enhancement at H1') in DNA and RNA by the 'NMR-window' approach has been shown to solve the problem of the resonance overlap [refs. 1, 2 & 3]. Such specific deuterium labelling gives much improved resolution and sensitivity of the residual sugar proton (i.e. H1' or H4') vicinal to the deuteriated centers (ref. 3). The T2 relaxation time of the residual protons also increases considerably in the partially-deuteriated (shown by underline) sugar residues in dinucleotides [d(CpG), d(GpC), d(ApT), d(TpA)], trinucleotide r(A2'p5'A2'p5'A) and 20-mer DNA duplex 5'd(C1G2C3-G4C5G6C7G8A9A10T11T12C13G14C15G16C17G18C19G20)(2) 3'. The protons with shorter T2 can be filtered away using a number of different NMR experiments such as ROESY, MINSY or HAL. The NOE intensity of the cross-peaks in these experiments includes only straight pathway from H1' to aromatic proton (i-i and i-i + 1) without any spin-diffusion. The volumes of these NOE cross-peaks could be measured with high accuracy as their intensity is 3 to 4 times larger than the corresponding peaks in the fully protonated residues in the normal NOESY spectra. The structural informations thus obtainable from the residual protons in the partially-deuteriated part of the duplex and the fully protonated part in the 'NMR window' can indeed complement each other.  相似文献   

17.
Solution structures of DNA duplexes containing oxanine (Oxa, O) opposite a cytosine (O:C duplex) and opposite a thymine (O:T duplex) have been solved by the combined use of (1)H NMR and restrained molecular dynamics calculation. One mismatch pair was introduced into the center of the 11-mer duplex of [d(GTGACO(6)CACTG)/d(CAGTGX(17)GTCAC), X = C or T]. (1)H NMR chemical shifts and nuclear Overhauser enhancement (NOE) intensities indicate that both the duplexes adopt an overall right-handed B-type conformation. Exchangeable resonances of C(17) 4-amino proton of the O:C duplex and of T(17) imino proton of O:T duplex showed unusual chemical shifts, and disappeared with temperature increasing up to 30 °C, although the melting temperatures were >50 °C. The O:C mismatch takes a wobble geometry with positive shear parameter where the Oxa ring shifted toward the major groove and the paired C(17) toward the minor groove, while, in the O:T mismatch pair with the negative shear, the Oxa ring slightly shifted toward the minor groove and the paired T(17) toward the major groove. The Oxa mismatch pairs can be wobbled largely because of no hydrogen bond to the O1 position of the Oxa base, and may occupy positions in the strands that optimize the stacking with adjacent bases.  相似文献   

18.
Thermodynamics of DNA duplexes with adjacent G.A mismatches.   总被引:11,自引:0,他引:11  
Y Li  G Zon  W D Wilson 《Biochemistry》1991,30(30):7566-7572
The sequence 5'-d(ATGAGCGAAT) forms a very stable self-complementary duplex with four G.A mismatch base pairs (underlined) out of ten total base pairs [Li et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 26-30]. The conformation is in the general B-family and is stabilized by base-pair hydrogen bonding of an unusual type, by favorable base dipole orientations, and by extensive purine-purine stacking at the mismatched sites. We have synthesized 13 decamers with systematic variations in the sequence above to determine how the flanking sequences, the number of G.A mismatches, and the mismatch sequence order (5'-GA-3' or 5'-AG-3') affect the duplex stability. Changing A.T to G.C base pairs in sequences flanking the mismatches stabilizes the duplexes, but only to the extent observed with B-form DNA. The sequence 5'-pyrimidine-GA-purine-3', however, is considerably more stable than 5'-purine-GA-pyrimidine-3'. The most stable sequences with two pairs of adjacent G.A mismatches have thermodynamic parameters for duplex formation that are comparable to those for fully Watson-Crick base-paired duplexes. Similar sequences with single G.A pairs are much less stable than sequences with adjacent G.A mismatches. Reversing the mismatch order from 5'-GA-3' to 5'-AG-3' results in an oligomer that does not form a duplex. These results agree with predictions from the model derived from NMR and molecular mechanics and indicate that the sequence 5'-pyrimidine-GA-purine-3' forms a stable conformational unit that fits quite well into a B-form double helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In the preceding paper in this journal, we described the solution structure of the nitrous acid cross-linked dodecamer duplex [d(GCATCCGGATGC)]2 (the cross-linked guanines are underlined). The structure revealed that the cross-linked guanines form a nearly planar covalently linked 'G:G base pair', with the complementary partner cytidines flipped out of the helix. Here we explore the flanking sequence context effect on the structure of nitrous acid cross-links in [d(CG)]2 and the factors allowing the extrahelical cytidines to adopt such fixed positions in the minor groove. We have used NMR spectroscopy to determine the solution structure of a second cross-linked dodecamer duplex, [d(CGCTACGTAGCG)]2, which shows that the identity of the flanking base pairs significantly alters the stacking patterns and phosphate backbone conformations. The cross-linked guanines are now stacked well on adenines preceding the extrahelical cytidines, illustrating the importance of purine- purine base stacking. Observation of an imino proton resonance at 15.6 p.p.m. provides evidence for hydrogen bonding between the two cross-linked guanines. Preliminary structural studies on the cross-linked duplex [d(CGCGACGTCGCG)]2 show that the extrahelical cytidines are very mobile in this sequence context. We suggest that favorable van der Waals interactions between the cytidine and the adenine 2 bp away from the cross-link localize the cytidines in the previous cross-linked structures.  相似文献   

20.
Two-dimensional proton NMR studies were undertaken on the d(C-G-A-G-A-A-T-T-C-C-C-G) duplex (designated A.C 12-mer) where the A at the mismatch site is flanked by G residues and the d(C-G-C-G-A-A-T-T-C-A-C-G) duplex (designated C.A 12-mer) where the A at the mismatch site is flanked by C residues in an attempt to elucidate the role of flanking base pairs on the structure of the A.C mismatch. The exchangeable and nonexchangeable proton spectra of these two dodecanucleotides have been completely characterized by two-dimensional nuclear Overhauser enhancement (NOE) experiments in H2O and D2O solution at acidic pH. The NOE distance connectivities demonstrate that both A and C at the mismatch site are stacked into a right-handed helix between flanking G.C base pairs and exhibit anti-glycosidic torsion angles. The proton chemical shifts and NOE patterns are consistent with Wobble A.C pairing for the A.C 12-mer and C.A 12-mer duplexes in solution and demonstrate that the A.C mismatches introduce local conformational perturbations that do not extend to the central AATT segment. We detect that amino protons of adenosine (approximately 9.2 ppm) but not of cytidine at the A.C mismatch site in both duplexes on lowering the pH below 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号