首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We mutated the vasoactive intestinal peptide (VIP) Asp(3) residue and two VPAC(1) receptor second transmembrane helix basic residues (Arg(188) and Lys(195)). VIP had a lower affinity for R188Q, R188L, K195Q, and K195I VPAC(1) receptors than for VPAC(1) receptors. [Asn(3)] VIP and [Gln(3)] VIP had lower affinities than VIP for VPAC(1) receptors but higher affinities for the mutant receptors; the two basic amino acids facilitated the introduction of the negatively charged aspartate inside the transmembrane domain. The resulting interaction was necessary for receptor activation. 1/[Asn(3)] VIP and [Gln(3)] VIP were partial agonists at VPAC(1) receptors; 2/VIP did not fully activate the K195Q, K195I, R188Q, and R188L VPAC(1) receptors; a VIP analogue ([Arg(16)] VIP) was more efficient than VIP at the four mutated receptors; and [Asn(3)] VIP and [Gln(3)] VIP were more efficient than VIP at the R188Q and R188L VPAC(1) receptors; 3/the [Asp(3)] negative charge did not contribute to the recognition of the VIP(1) antagonist, [AcHis(1),D-Phe(2),Lys(15),Arg(16),Leu(27)] VIP ()/growth hormone releasing factor (8-27). This is the first demonstration that, to activate the VPAC(1) receptor, the Asp(3) side chain of VIP must penetrate within the transmembrane domain, in close proximity to two highly conserved basic amino acids from transmembrane 2.  相似文献   

2.
The human C3a anaphylatoxin receptor (C3aR) is a G protein-coupled receptor (GPCR) composed of seven transmembrane alpha-helices connected by hydrophilic loops. Previous studies of chimeric C3aR/C5aR and loop deletions in C3aR demonstrated that the large extracellular loop2 plays an important role in noneffector ligand binding; however, the effector binding site for C3a has not been identified. In this study, selected charged residues in the transmembrane regions of C3aR were replaced by Ala using site-directed mutagenesis, and mutant receptors were stably expressed in the RBL-2H3 cell line. Ligand binding studies demonstrated that R161A (helix IV), R340A (helix V), and D417A (helix VII) showed no binding activity, although full expression of these receptors was established by flow cytometric analysis. C3a induced very weak intracellular calcium flux in cells expressing these three mutant receptors. H81A (helix II) and K96A (helix III) showed decreased ligand binding activity. The calcium flux induced by C3a in H81A and K96A cells was also consistently reduced. These findings suggest that the charged transmembrane residues Arg161, Arg340, and Asp417 in C3aR are essential for ligand effector binding and/or signal coupling, and that residues His81 and Lys96 may contribute less directly to the overall free energy of ligand binding. These transmembrane residues in C3aR identify specific molecular contacts for ligand interactions that account for C3a-induced receptor activation.  相似文献   

3.
We have identified two basic residues that are important for the recognition of secretin and vasoactive intestinal peptide (VIP) by their respective receptors. These two peptides containing an Asp residue at position 3 interacted with an arginine residue in transmembrane helix 2 (TM2) of the receptor, and the lysine residue in extracellular loop 1 (ECL1) stabilized the active receptor conformation induced by the ligand. The glucagon receptor possesses a Lys instead of an Arg in TM2, and an Ile instead of Lys in ECL1; it markedly prefers a Gln side chain in position 3 of the ligand. Our results suggested that, in the wild-type receptor, the Ile side chain prevented access to the TM2 Lys side chain, but oriented the glucagon Gln(3) side chain to its proper binding site. In the double mutant, the ECL1 Lys allowed an interaction between negatively charged residues in position 3 of glucagon and the TM2 Arg, resulting in efficient receptor activation by [Asp(3)]glucagon as well as by glucagon.  相似文献   

4.
Abstract: The human cannabinoid receptor associated with the CNS (CB1) binds Δ9-tetrahydrocannabinol, the psychoactive component of marijuana, and other cannabimimetic compounds. This receptor is a member of the seven transmembrane domain G protein-coupled receptor family and mediates its effects through inhibition of adenylyl cyclase. An understanding of the molecular mechanisms involved in ligand binding and receptor activation requires identification of the active site residues and their role. Lys192 of the third transmembrane domain of the receptor is noteworthy because it is the only nonconserved, charged residue in the transmembrane region. To investigate the properties of this residue, which are important for both ligand binding and receptor activation, we generated mutant receptors in which this amino acid was changed to either Arg (K192R), Gln (K192Q), or Glu (K192E). Wild-type and mutant receptors were stably expressed in Chinese hamster ovary cells and were evaluated in binding assays with the bicyclic cannabinoid CP-55,940 and the aminoalkylindole WIN 55,212-2. We found that only the most conservative change of Lys to Arg allowed retention of binding affinity to CP-55,940, whereas WIN 55,212-2 bound to all of the mutant receptors in the same range as it bound the wild type. Analysis of the ligand-induced inhibition of cyclic AMP production in cells expressing each of the receptors gave an EC50 value for each agonist that was comparable to its binding affinity, with one exception. Although the mutant K192E receptor displayed similar binding affinity as the wild type with WIN 55,212-2, an order of magnitude difference was observed for the EC50 for cyclic AMP inhibition with this compound. The results of this study indicate that binding of CP-55,940 is highly sensitive to the chemical nature of residue 192. In contrast, although this residue is not critical for WIN 55,212-2 binding, the data suggest a role for Lys192 in WIN 55,212-2-induced receptor activation.  相似文献   

5.
The cardiac m2 muscarinic acetylcholine receptor (mAChR) is a sialoglycosylated transmembrane protein which has three potential sites for N-glycosylation (namely, Asn2, Asn3, and Asn6). To investigate the role of N-linked oligosaccharide(s) in the expression and function of the receptor, we constructed glycosylation-defective mutant receptor genes in which the three asparagine codons were substituted by codons for either aspartate (Asp2,3,6), lysine (Lys2,3,6), or glutamine (Gln2,3,6). The glycosylation-defective and wild-type receptor genes were stably expressed in Chinese hamster ovary cells. Binding experiments with the membrane-permeable radioligand [3H]quinuclidinyl-benzilate and the membrane-impermeable radioligand [3H]N-methylscopolamine revealed that the Asp2,3,6, Gln2,3,6, and wild-type receptors were located exclusively on the cell surface and expressed in similar numbers. The Lys2,3,6 mutant receptor was expressed at a relatively low level and was therefore not included in subsequent experiments. Wheat germ agglutinin-Sepharose chromatography and sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis demonstrated that the wild-type receptor, but not the Asp2,3,6 and Gln2,3,6 mutant receptors were N-glycosylated. The Asp2,3,6 and Gln2,3,6 mutant receptors had the same affinities for mAChR ligands as wild-type receptors. The time courses for degradation of the Asp2,3,6, Gln2,3,6, and wild-type receptors were also similar. In vivo functional analysis of the ability of the glycosylation mutant receptors to inhibit forskolin-stimulated cAMP accumulation revealed that maximal inhibition of adenylate cyclase activity was similar in the mutant and wild-type receptors. The Asp2,3,6 mutant receptor had an unaltered IC50 value for carbachol while the IC50 value of the Gln2,3,6 mutant receptor was 2-fold higher than that of the wild-type receptor. These results indicate that N-glycosylation of the m2 mAChR is not required for cell surface localization or ligand binding and does not confer increased stability against receptor degradation. Furthermore, N-glycosylation of the m2 mAChR is not required for functional coupling of the m2 mAChR to inhibition of adenylate cyclase.  相似文献   

6.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

7.
The lutropin (LH), follitropin, and thyrotropin receptors belong to the superfamily of G-protein coupled receptors and have some unique structural features. These glycoprotein hormone receptors comprise a C-terminal half and an N-terminal half of similar size. The C-terminal half is equivalent to the entire structure of other G-protein coupled receptors and has seven transmembrane domains, three cytoplasmic loops, three exoplasmic loops, and a C terminus. In contrast, the hydrophilic N-terminal half is exoplasmic and unique to the glycoprotein hormone receptors. This large N-terminal half of the LH receptor has recently been shown to be capable of binding the hormone. Therefore, these glycoprotein hormone receptors are structurally and functionally different from other G-protein coupled receptors. In an attempt to define the role of the membrane-associated C-terminal half of the LH receptor, we have prepared several mutant receptors in which an Asp or Glu in the seven transmembrane domains has been converted to Asn or Gln, respectively. These include Asp383----Asn in the second transmembrane domain, Glu410----Gln in the third transmembrane domain, and Asp556----Asn in the sixth transmembrane domain. All these mutant receptors were successfully expressed in Cos 7A cells. The Glu410----Gln and Asp556----Asn mutants maintained normal affinities for hormone binding and cAMP production, but the Asp383----Asn mutant showed significantly lower affinities. Although Asp383 of the LH receptor is conserved in all G-protein coupled receptors cloned to date except the substance P receptor, which has Glu in the place of the Asp residue, this is the first observation of the critical role of the Asp in hormone binding and subsequent stimulation of cAMP production.  相似文献   

8.
Eubanks S  Nguyen TL  Peyton D  Breslow E 《Biochemistry》2000,39(27):8085-8094
Bovine neurophysins, which have typically served as the paradigm for neurophysin behavior, are metastable in their disulfide-paired folded state and require ligand stabilization for efficient folding from the reduced state. Studies of unliganded porcine neurophysin (oxytocin-associated class) demonstrated that its dimerization constant is more than 90-fold greater than that of the corresponding bovine protein at neutral pH and showed that the increased dimerization constant is accompanied by an increase in stability sufficient to allow efficient folding of the reduced protein in the absence of ligand peptide. Using site-specific mutagenesis of the bovine protein and expression in Escherichia coli, the functional differences between the bovine and porcine proteins were shown to be attributable solely to two subunit interface mutations in the porcine protein, His to Arg at position 80 and Glu to Phe at position 81. Mutation of His-80 alone to Arg had a relatively small impact on dimerization, while mutation to either Glu or Asp markedly reduced dimerization in the unliganded state, albeit with apparent retention of the positive linkage between dimerization and binding. Comparison of the peptide-binding constants of the different mutants additionally indicated that substitution of His-80 led to modifications in binding affinity and specificity that were independent of effects on dimerization. The results demonstrate the importance of the carboxyl domain segment of the subunit interface in modulating neurophysin properties and suggest a specific contribution of the energetics of ligand-induced conformational change in this region to the overall thermodynamics of binding. The potential utility to future studies of the self-folding and monomeric mutants generated by altering the interface is noted.  相似文献   

9.
The bovine brain A1 adenosine receptor (A1AR) is distinct from other A1ARs in that it displays the unique agonist potency series of N6-R-phenylisopropyladenosine (R-PIA) greater than N6-S-phenylisopropyladenosine (S-PIA) greater than 5'-N-ethylcarboxamidoadenosine and has a 5-10-fold higher affinity for both agonists and antagonists. The cDNA for this receptor has been cloned from a size-selected (2-4-kb) bovine brain library and sequenced. The 2.0-kb cDNA encodes a protein of 326 amino acid residues with a molecular mass of 36,570 daltons. The amino acid sequence fits well into the seven-transmembrane domain motif typical of G protein-coupled receptors. Northern analysis in bovine tissue using the full length cDNA demonstrates mRNAs of 3.4 and 5.7 kb with a tissue distribution consistent with A1AR binding. Subcloning of the cDNA in a pCMV5 expression vector with subsequent transfection into both COS7 and Chinese hamster ovary cells revealed a fully functional A1AR which could inhibit adenylylcyclase and retained the unique pharmacologic properties of the bovine brain A1AR. The A1AR was found to have a single histidine residue in each of transmembrane domains 6 and 7. Histidine residues have been postulated by biochemical studies to be important for ligand binding. Mutation of His-278 to Leu-278 (seventh transmembrane domain) dramatically decreased both agonist and antagonist binding by greater than 90%. In contrast, mutation of His-251 to Leu-251 decreased antagonist affinity and the number of receptors recognized by an antagonist radioligand. In contrast, agonist affinity was not perturbed but the number of receptors detected by an agonist radioligand was also reduced. These data suggest that both histidines are important for both agonist and antagonist binding, but His-278 appears critical for ligand binding to occur.  相似文献   

10.
The chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) is a G protein-coupled receptor that mediates the pro-inflammatory effects of prostaglandin D(2) (PGD(2)) generated in allergic inflammation. The CRTH2 receptor shares greatest sequence similarity with chemoattractant receptors compared with prostanoid receptors. To investigate the structural determinants of CRTH2 ligand binding, we performed site-directed mutagenesis of putative mCRTH2 ligand-binding residues, and we evaluated mutant receptor ligand binding and functional properties. Substitution of alanine at each of three residues in the transmembrane (TM) helical domains (His-106, TM III; Lys-209, TM V; and Glu-268, TM VI) and one in extracellular loop II (Arg-178) decreased PGD(2) binding affinity, suggesting that these residues play a role in binding PGD(2). In contrast, the H106A and E268A mutants bound indomethacin, a nonsteroidal anti-inflammatory drug, with an affinity similar to the wild-type receptor. HEK293 cells expressing the H106A, K209A, and E268A mutants displayed reduced inhibition of intracellular cAMP and chemotaxis in response to PGD(2), whereas the H106A and E268A mutants had functional responses to indomethacin similar to the wild-type receptor. Binding of PGE(2) by the E268A mutant was enhanced compared with the wild-type receptor, suggesting that Glu-268 plays a role in determining prostanoid ligand selectivity. Replacement of Tyr-261 with phenylalanine did not affect PGD(2) binding but decreased the binding affinity for indomethacin. These results provided the first details of the ligand binding pocket of an eicosanoid-binding chemoattractant receptor.  相似文献   

11.
The prolactin-releasing peptide receptor and its bioactive RF-amide peptide (PrRP20) have been investigated to explore the ligand binding mode of peptide G-protein-coupled receptors (GPCRs). By receptor mutagenesis, we identified the conserved aspartate in the upper transmembrane helix 6 (Asp(6.59)) of the receptor as the first position that directly interacts with arginine 19 of the ligand (Arg(19)). Replacement of Asp(6.59) with Arg(19) of PrRP20 led to D6.59R, which turned out to be a constitutively active receptor mutant (CAM). This suggests that the mutated residue at the top of transmembrane helix 6 mimics Arg(19) by interacting with additional binding partners in the receptor. Next, we generated an initial comparative model of this CAM because no ligand docking was required, and we selected the next set of receptor mutants to find the engaged partners of the binding pocket. In an iterative process, we identified two acidic residues and two hydrophobic residues that form the peptide ligand binding pocket. As all residues are localized on top or in the upper part of the transmembrane domains, we clearly can show that the extracellular surface of the receptor is sufficient for full signal transduction for prolactin-releasing peptide, rather than a deep, membrane-embedded binding pocket. This contributes to the knowledge of the binding of peptide ligands to GPCRs and might facilitate the development of GPCR ligands, but it also provides new targeting of CAMs involved in hereditary diseases.  相似文献   

12.
Previous studies have shown that differences in subtype-specific ligand binding between alpha 2 and beta 2 adrenergic receptors are largely determined by the seventh hydrophobic domain. Here, we report that a single amino acid substitution (Phe412----Asn) in the seventh hydrophobic domain of the alpha 2 adrenergic receptor reduces affinity for the alpha 2 antagonist yohimbine by 350-fold and increases affinity for beta antagonist alprenolol by 3000-fold. The affinity of this mutant receptor alpha 2F----N for several alpha and beta adrenergic receptor agonists and antagonists was determined. Beta adrenergic receptor antagonists containing an oxygen atom linking the amino side chain with the aromatic ring bound to alpha 2F----N with high affinity, while the beta receptor antagonist sotalol, which lacks this oxygen, bound with low affinity. These data suggest that the Asn residue is involved in conferring specificity for binding to a specific class of beta receptor antagonists.  相似文献   

13.
A series of group specific modifying reagents were tested for their effects on [3H]spiperone binding to brain D2 dopamine receptors to identify amino acid residues at the binding site of the D2 dopamine receptor that are critical for ligand binding. The dependence of ligand binding to the receptor on the pH of the incubation medium was also examined. N-Acetylimidazole, 5,5'-dithiobis(2-nitrobenzoic acid), 1,2-cyclohexanedione, and acetic anhydride had no specific effect on [3H]spiperone binding, indicating the lack of participation of tyrosine, free sulphydryl, arginine, or primary amino groups in ligand binding to the receptor. N,N'-Dicyclohexylcarbodiimide (DCCD) potently reduced the number of [3H]spiperone binding sites, indicating that a carboxyl group is involved in ligand binding to the receptor. The effects of DCCD could be prevented by prior incubation of the receptor with D2 dopamine receptor selective compounds. The pH-binding profile for [3H]spiperone binding indicated the importance of an ionising group of pKa 5.2 for ligand binding which may be the same carboxyl group. Diethyl pyrocarbonate, the histidine modifying reagent, also inhibited [3H]spiperone binding, reducing the affinity of the receptor for this ligand but the effects were not at the ligand binding site. From the effects of pH changes on ligand binding some evidence was obtained for a second ionising group (pKa 7.0) that specifically affects the binding of substituted benzamide drugs to the receptor. It is concluded that the D2 dopamine receptor binding site contains separate but over-lapping binding regions for antagonists such as spiperone and substituted benzamide drugs. The former region contains an important carboxyl group; the latter region contains another group that may be a second carboxyl group or a histidine.  相似文献   

14.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

15.
The function of positively charged residues and the interaction of positively and negatively charged residues of the rat vesicular acetylcholine transporter (rVAChT) were studied. Changing Lys-131 in transmembrane domain helix 2 (TM2) to Ala or Leu eliminated transport activity, with no effect on vesamicol binding. However, replacement by His or Arg retained transport activity, suggesting a positive charge in this position is critical. Mutation of His-444 in TM12 or His-413 in the cytoplasmic loop between TM10 and TM11 was without effect on ACh transport, but vesamicol binding was reduced with His-413 mutants. Changing His-338 in TM8 to Ala or Lys did not effect ACh transport, however replacement with Cys or Arg abolished activity. Mutation of both of the transmembrane histidines or all three of the luminal loop histidines showed no change in acetylcholine transport. The mutant H338A/D398N between oppositely charged residues in transmembrane domains showed no vesamicol binding, however the charge reversal mutant H338D/D398H restored binding. This suggests that His-338 forms an ion pair with Asp-398. The charge neutralizing mutant K131A/D425N or the charge exchanged mutant K131D/D425K did not restore ACh transport. Taken together these results provide new insights into the tertiary structure in VAChT.  相似文献   

16.
L A LeBrun  B V Plapp 《Biochemistry》1999,38(38):12387-12393
The rate of association of NAD(+) with wild-type horse liver alcohol dehydrogenase (ADH) is maximal at pH values between pK values of about 7 and 9, and the rate of NADH association is maximal at a pH below a pK of 9. The catalytic zinc-bound water, His-51 (which interacts with the 2'- and 3'-hydroxyl groups of the nicotinamide ribose of the coenzyme in the proton relay system), and Lys-228 (which interacts with the adenosine 3'-hydroxyl group and the pyrophosphate of the coenzyme) may be responsible for the observed pK values. In this study, the Lys228Arg, His51Gln, and Lys228Arg/His51Gln (to isolate the effect of the catalytic zinc-bound water) mutations were used to test the roles of the residues in coenzyme binding. The steady state kinetic constants at pH 8 for the His51Gln enzyme are similar to those for wild-type ADH. The Lys228Arg and Lys228Arg/His51Gln substitutions decrease the affinity for the coenzymes up to 16-fold, probably due to altered interactions with the arginine at position 228. As determined by transient kinetics, the rate constant for association of NAD(+) with the mutated enzymes no longer decreases at high pH. The pH profile for the Lys228Arg enzyme retains the pK value near 7. The His51Gln and Lys228Arg/His51Gln substitutions significantly decrease the rate constants for NAD(+) association, and the pH dependencies show that these enzymes bind NAD(+) most rapidly at a pH above pK values of 8. 0 and 9.0, respectively. It appears that the pK of 7 in the wild-type enzyme is shifted up by the H51Q substitutions, and the resulting pH dependence is due to the deprotonation of the catalytic zinc-bound water. Kinetic simulations suggest that isomerization of the enzyme-NAD(+) complex is substantially altered by the mutations. In contrast, the pH dependencies for NADH association with His51Gln, Lys228Arg, and Lys228Arg/His51Gln enzymes were the same as for wild-type ADH, suggesting that the binding of NAD(+) and the binding of NADH are controlled differently.  相似文献   

17.
Histidine residues in Na+/H+ exchangers are believed to participate in proton binding and influence the Na+/H+ exchanger activity. In the present study, the function of three highly conserved histidines in the juxtamembrane cytoplasmic domain of NHE3 was studied. His-479, His-485, and His-499 were mutated to Leu, Gln or Asp and expressed in an Na+/H+ exchanger null cell line and functional consequences on Na+/H+ exchange kinetics were characterized. None of the histidines were essential for NHE3 activity, with all mutated NHE3 resulting in functional exchangers. However, the mutation in His-475 and His-499 significantly lowered NHE3 transport activity, whereas the mutation in H485 showed no apparent effect. In addition, the pH profiles of the H479 and H499 mutants were shifted to a more acidic region, and lowered its set point, the intracellular pH value above which the Na+/H+ exchanger becomes inactive, by approximately 0.3-0.6 pH units. The changes in set point by the mutations were further shifted to more acidic values by ATP depletion, indicating that the mechanism by which the mutations on the histidine residues altered the NHE3 set point differs from that caused by ATP depletion. We suggest that His-479 and His-499 are part of the H+ sensor, which is involved in determining the sensitivity to the intracellular H+ concentration and Na+/H+ exchange rate.  相似文献   

18.
α-Synuclein (αSyn) aggregation is involved in the pathogenesis of Parkinson disease (PD). Recently, substitution of histidine 50 in αSyn with a glutamine, H50Q, was identified as a new familial PD mutant. Here, nuclear magnetic resonance (NMR) studies revealed that the H50Q substitution causes an increase of the flexibility of the C-terminal region. This finding provides direct evidence that this PD-causing mutant can mediate long range effects on the sampling of αSyn conformations. In vitro aggregation assays showed that substitution of His-50 with Gln, Asp, or Ala promotes αSyn aggregation, whereas substitution with the positively charged Arg suppresses αSyn aggregation. Histidine carries a partial positive charge at neutral pH, and so our result suggests that positively charged His-50 plays a role in protecting αSyn from aggregation under physiological conditions.  相似文献   

19.
Structural basis of beta-adrenergic receptor function   总被引:31,自引:0,他引:31  
Receptors that mediate their actions by stimulating guanine nucleotide binding regulatory proteins (G proteins) share structural as well as functional similarities. The structural motif characteristic of receptors of this class includes seven hydrophobic putative transmembrane domains linked by hydrophilic loops. Genetic analysis of the beta-adrenergic receptor (beta AR) revealed that the ligand binding domain of this receptor, like that of rhodopsin, involves residues within the hydrophobic core of the protein. On the basis of these studies, a model for ligand binding to the receptor has been developed in which the amino group of an agonist or antagonist is anchored to the receptor through the carboxylate side chain of Asp113 in the third transmembrane helix. Other interactions between specific residues of the receptor and functional groups on the ligand have also been proposed. The interaction between the beta AR and the G protein Gs has been shown to involve an intracellular region that is postulated to form an amphiphilic alpha helix. This region of the beta AR is also critical for sequestration, which accompanies agonist-mediated desensitization, to occur. Structural similarities among G protein-linked receptors suggest that the information gained from the genetic analysis of the beta AR should help define functionally important regions of other receptors of this class.  相似文献   

20.
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号