首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otx2 is expressed in each step and site of head development. To dissect each Otx2 function we have identified a series of Otx2 enhancers. The Otx2 expression in the anterior neuroectoderm is regulated by the AN enhancer and the subsequent expression in forebrain and midbrain later than E8.5 by FM1 and FM2 enhancers; the Otx1 expression takes place at E8.0. In telencephalon later than E9.5 Otx1 continues to be expressed in the entire pallium, while the Otx2 expression is confined to the most medial pallium. To determine the Otx functions in forebrain and midbrain development we have generated mouse mutants that lack both FM1 and FM2 enhancers (DKO: Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) and examined the TKO (Otx1/Otx2ΔFM1ΔFM2/ΔFM1ΔFM2) phenotype. The mutants develop normally until E8.0, but subsequently by E9.5 the diencephalon, including thalamic eminence and prethalamus, and the mesencephalon are caudalized into metencephalon consisting of isthmus and rhombomere 1; the caudalization does not extend to rhombomere 2 and more caudal rhombomeres. In rostral forebrain, neopallium, ganglionic eminences and hypothalamus in front of prethalamus develop; we propose that they become insensitive to the caudalization with the switch from the Otx2 expression under the AN enhancer to that under FM1 and FM2 enhancers. In contrast, the medial pallium requires Otx1 and Otx2 for its development later than E9.5, and the Otx2 expression in diencepalon and mesencephalon later than E9.5 is also directed by an enhancer other than FM1 and FM2 enhancers.  相似文献   

2.
Otx2 plays essential roles in each site at each step of head development. We previously identified the AN1 enhancer at 91 kb 5' upstream for the Otx2 expressions in anterior neuroectoderm (AN) at neural plate stage before E8.5, and the FM1 enhancer at 75 kb 5' upstream and the FM2 enhancer at 122 kb 3' downstream for the expression in forebrain/midbrain (FM) at brain vesicle stage after E8.5. The present study identified a second AN enhancer (AN2) at 88 kb 5' upstream; the AN2 enhancer also recapitulates the endogenous Otx2 expression in choroid plexus, cortical hem and choroidal roof. However, the enhancer mutants indicated the presence of another AN enhancer. The study also identified a third FM enhancer (FM3) at 153 kb 5' upstream. Thus, the Otx2 expressions in anterior neuroectoderm and forebrain/midbrain are regulated by more than six enhancers located far from the coding region. The enhancers identified are differentially conserved among vertebrates; none of the AN enhancers has activities in caudal forebrain and midbrain at brain vesicle stage after E8.5, nor do any of the FM enhancers in anterior neuroectoderm at neural plate stage before E8.5.  相似文献   

3.
We have identified cis-regulatory sequences acting on Otx2 expression in epiblast (EP) and anterior neuroectoderm (AN) at about 90 kb 5' upstream. The activity of the EP enhancer is found in the inner cell mass at E3.5 and the entire epiblast at E5.5. The AN enhancer activity is detected initially at E7.0 and ceases by E8.5; it is found later in the dorsomedial aspect of the telencephalon at E10.5. The EP enhancer includes multiple required domains over 2.3 kb, and the AN enhancer is an essential component of the EP enhancer. Mutants lacking the AN enhancer have demonstrated that these cis-sequences indeed regulate Otx2 expression in EP and AN. At the same time, our analysis indicates that another EP and AN enhancer must exist outside of the -170 kb to +120 kb range. In Otx2DeltaAN/- mutants, in which one Otx2 allele lacks the AN enhancer and the other allele is null, anteroposterior axis forms normally and anterior neuroectoderm is normally induced. Subsequently, however, forebrain and midbrain are lost, indicating that Otx2 expression under the AN enhancer functions to maintain anterior neuroectoderm once induced. Furthermore, Otx2 under the AN enhancer cooperates with Emx2 in diencephalon development. The AN enhancer region is conserved among mouse, human and Xenopus; moreover, the counterpart region in Xenopus exhibited an enhancer activity in mouse anterior neuroectoderm.  相似文献   

4.
In rodents, the Otx2 gene is expressed in the diencephalon, mesencephalon, and cerebellum and is crucial for the development of these brain regions. Together with Otx1, Otx2 is known to cooperate with other genes to develop the caudal forebrain and, further, Otx1 is also involved in differentiation of young neurons of the deeper cortical layers. We have studied the spatial and temporal expression of the two homeobox genes OTX2 and OTX1 in human fetal brains from 7 to 14 weeks postconception by in situ hybridization and immunohistochemistry. OTX2 was expressed in the diencephalon, mesencephalon, and choroid plexus, with a minor expression in the basal telencephalon. The expression of OTX2 in the hippocampal anlage was strong, with no expression in the adjacent neocortex. Contrarily, the OTX1 expression was predominantly located in the proliferative zones of the neocortex. At later stages, the OTX2 protein was found in the subcommissural organ, pineal gland, and cerebellum. The early expression of OTX2 and OTX1 in proliferative cell layers of the human fetal brain supports the concept that these homeobox genes are important in neuronal cell development and differentiation: OTX1 primarily in the neocortex, and OTX2 in the archicortex, diencephalon, rostral brain stem, and cerebellum. (J Histochem Cytochem 58:669–678, 2010)  相似文献   

5.
The mouse homeobox gene Otx2 plays essential roles at each step and in every tissue during head development. We have previously identified a series of enhancers that are responsible for driving the Otx2 expression in these contexts. Among them the AN enhancer, existing 92 kb 5' upstream, directs Otx2 expression in anterior neuroectoderm (AN) at the headfold stage. Analysis of the enhancer mutant Otx2(DeltaAN/-) indicated that Otx2 expression under the control of this enhancer is essential to the development of AN. This study demonstrates that the AN enhancer is promoter-dependent and regulated by acetylated YY1. YY1 binds to both the AN enhancer and promoter region. YY1 is acetylated in the anterior head, and only acetylated YY1 can bind to the sequence in the enhancer. Moreover, YY1 binding to both of these two sites is essential to Otx2 expression in AN. These YY1 binding sites are highly conserved in AN enhancers in tetrapods, coelacanth and skate, suggesting that establishment of the YY1 regulation coincides with that of OTX2 function in AN development in an ancestral gnathostome.  相似文献   

6.
7.
Otx1 and Otx2, two murine homologs of the Drosophila orthodenticle (otd) gene, show a limited amino acid sequence divergence. Their embryonic expression patterns overlap in spatial and temporal profiles with two major exceptions: until 8 days post coitum (d.p.c. ) only Otx2 is expressed in gastrulating embryos, and from 11 d.p.c. onwards only Otx1 is transcribed within the dorsal telencephalon. Otx1 null mice exhibit spontaneous epileptic seizures and multiple abnormalities affecting primarily the dorsal telencephalic cortex and components of the acoustic and visual sense organs. Otx2 null mice show heavy gastrulation abnormalities and lack the rostral neuroectoderm corresponding to the forebrain, midbrain and rostral hindbrain. In order to define whether these contrasting phenotypes reflect differences in expression pattern or coding sequence of Otx1 and Otx2 genes, we replaced Otx1 with a human Otx2 (hOtx2) full-coding cDNA. Interestingly, homozygous mutant mice (hOtx2(1)/hOtx2(1)) fully rescued epilepsy and corticogenesis abnormalities and showed a significant improvement of mesencephalon, cerebellum, eye and lachrymal gland defects. In contrast, the lateral semicircular canal of the inner ear was never recovered, strongly supporting an Otx1-specific requirement for the specification of this structure. These data indicate an extended functional homology between OTX1 and OTX2 proteins and provide evidence that, with the exception of the inner ear, in Otx1 and Otx2 null mice contrasting phenotypes stem from differences in expression patterns rather than in amino acid sequences.  相似文献   

8.
A novel gene, cfm, that is expressed uniquely during early forebrain and midbrain development was isolated, and its null mutant was generated. cfm does not have any known functional domains, but is conserved in human, chick, Xenopus and zebrafish; a site of phosphorylation by MAP kinase exists in one of the domains conserved among them. Its expression was initially found at the 5-somite stage in the future midbrain and caudal forebrain region. The expression in mesencephalon subsequently decreased, was found in a stripe in the mid mesencephalon at E9.0. The expression in diencephalon was restricted to the dorsal thalamic region by E9.5 and to epiphysis at E12.5. In mouse a cognate, cfm2, exists that is expressed uniquely in the somite just formed and the presomite to be segmented, but not in forebrain or midbrain during early development. However, the cfm null mutant was live-born without any apparent defects.  相似文献   

9.
In mouse Otx2 plays essential roles in anterior-posterior axis formation and head development in anterior visceral endoderm and anterior mesendoderm. The Otx2 expression in these sites is regulated by VE and CM enhancers at the 5' proximal to the translation start site, and we proposed that these enhancers would have been established in ancestral sarcoptergians after divergence from actinopterigians for the use of Otx2 as the head organizer gene (Kurokawa et al., 2010). This would make doubtful an earlier proposal of ours that a 1.1 kb fragment located at +14.4 to +15.5 kb 3' (3'En) of fugu Otx2a gene harbors enhancers phylogenetically and functionally homologous to mouse VE and CM enhancers (Kimura-Yoshida et al., 2007). In the present study, we demonstrate that fugu Otx2a is not expressed in the dorsal margin of blastoderm, shield and early anterior mesendoderm, and that the fugu Otx2a 3'En do not exhibit activities at these sites of fugu embryos. We conclude that the fugu Otx2a 3'En does not harbor an organizer enhancer, but encodes an enhancer for the expression in later anterior mesendodermal tissues. Instead, in fugu embryos Otx2b is expressed in the dorsal margin of blastoderm at blastula stage and shield at 50% epiboly, and this expression is directed by an enhancer, 5'En, located at -1000 to -800 bp, which is uniquely conserved among teleost Otx2b orthologues.  相似文献   

10.
11.
12.
13.
14.
The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66-68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959-969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.  相似文献   

15.
16.
17.
18.
19.
20.
The vertebrate brain is among the most complex biological structures of which the organization remains unclear. Increasing numbers of studies have accumulated on the molecular basis of midbrain/hindbrain development, yet relatively little is known about forebrain organization. Nested expression among Otx and Emx genes has implicated their roles in rostral brain regionalization, but single mutant phenotypes of these genes have not provided sufficient information. In order to genetically determine the interaction between Emx and Otx genes in forebrain development, we have examined Emx2(-/-)Otx2(+/-) double mutants and Emx2 knock-in mutants into the Otx2 locus (Otx2(+/Emx2)). Emx2(-/-)Otx2(+/-) double mutants did not develop diencephalic structures such as ventral thalamus, dorsal thalamus/epithalamus and anterior pretectum. The defects were attributed to the loss of the Emx2-positive region at the three- to four-somite stage, when its expression occurs in the laterocaudal forebrain primordia. Ventral structures such as the hypothalamus, mammillary region and tegmentum developed normally. Moreover, dorsally the posterior pretectum and posterior commissure were also present in the double mutants. In contrast, Otx2(+/Emx2) knock-in mutants displayed the majority of these diencephalic structures; however, the posterior pretectum and posterior commissure were specifically absent. Consequently, development of the dorsal and ventral thalamus and anterior pretectum requires cooperation between Emx2 and Otx2, whereas Emx2 expression is incompatible with development of the commissural region of the pretectum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号