首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell injury from hyperoxia is associated with increased formation of superoxide radicals (O2-). One potential source for O2- radicals is the reduction of molecular O2 catalyzed by xanthine oxidase (XO). Physiologically, this reaction occurs at a relatively low rate, because the native form of the enzyme is xanthine dehydrogenase (XD) which produces NADH instead of O2-. Reports of accelerated conversion of XD to XO, and increased formation of O2- formation in ischemia-reperfusion injury, led us to examine whether hyperoxia, which is known to increase O2- radical formation, is associated with increased lung XO activity, and accelerated conversion of XD to XO. We exposed 3-month-old rats either to greater than 98% O2 or room air. After 48 h, we sacrificed the rats and measured XD and XO activities and uric acid contents of the lungs. We also measured the activities of the two enzymes in the heart as a control organ. We found that the activity of XD was not altered significantly by hyperoxia in rat lungs or hearts, but XO activity was markedly lower in the lung, whether expressed per whole organ or per milligram protein, and remained unchanged in the heart. Lung uric acid content was also significantly lower with hyperoxia. The decrease in lung XO activity may reflect inactivation of the enzyme by reactive O2 metabolites, possibly as a negative feedback mechanism. The concomitant decrease in uric acid content suggests either decreased production mediated by XO due to its inactivation or greater utilization of uric acid as an antioxidant. We examined these postulates in vitro using a xanthine/xanthine oxidase system and found that H2O2, but not uric acid, has an inhibitory effect on O2- formation in the system. We therefore conclude that hyperoxia is not associated with increased conversion of XD to XO, and that the exact contribution of XO to hyperoxic lung injury in vivo remains unclear.  相似文献   

2.
We directly measured the activity of the enzymes xanthine oxidase and xanthine dehydrogenase in rabbit and rat hearts, using a sensitive radiochemical assay. Neither xanthine oxidase activity nor xanthine dehydrogenase activity was detected in the rabbit heart. In the rat heart, xanthine oxidase activity was 9.1 +/- 0.5 mIU per gram wet weight and xanthine dehydrogenase activity was 53.0 +/- 1.9 mIU per gram wet weight. These results argue against the involvement of the xanthine oxidase/xanthine dehydrogenase system as a mechanism of tissue injury in the rabbit heart, and suggest that the ability of allopurinol to protect the rabbit heart against hypoxic or ischemic damage must be due to a mechanism other than inhibition of these enzymes.  相似文献   

3.
4.
Bacterial xanthine oxidase from Arthrobacter S-2.   总被引:4,自引:1,他引:3       下载免费PDF全文
Arthrobacter S-2, originally isolated by enrichment on xanthine, produced high levels of xanthine oxidase activity, requiring as little as a 20-fold purification to approach homogeneity with some preparations. Molecular oxygen, ferricyanide, and 2,6-dichlorophenol-indophenol served as electron acceptors, but nicotinamide adenine dinucleotide did not. The enzyme was relatively specific when compared with previously studied xanthine-oxidizing enzymes, but at least one purine was observed to be oxidized at each of the three positions of the purine ring that have been subject to oxidation by this type of enzyme. The enzyme had a relatively high Km for xanthine (1.3 X 10(-4) M), and substrate inhibition was not observed with this compound, in contrast to the enzyme from cow's milk. In fact, an opposite effect was observed, and double-reciprocal plots with xanthine as the variable substrate showed a concave downward deviation at high concentrations. At 2.5 mM xanthine the enzyme had a specific activity approximately 50 times that of the most active preparations of the milk enzyme. The spectrum of the Arthrobacter enzyme resembled that of milk xanthine oxidase, suggesting a similarity of the prosthetic centers of the two enzymes. The bacterial enzyme was relatively small and may be dimeric, with approximate native and subunit molecular weights of 146,000 and 79,000, respectively.  相似文献   

5.
6.
Luminol chemiluminescence induced by the xanthine or hypoxanthine-O2-xanthine oxidase system is analyzed and compared. Characteristics of the light emission curves were examined considering the conventional reaction scheme for the oxidation of both substrates in the presence of xanthine oxidase. The ratio of the areas of the rate of superoxide production during substrate oxidation to uric acid. The O2-. to uric acid ratio for each substrate can account for differences in xanthine and hypoxanthine-supported light emission, since uric acid is a strong inhibitor of O2-.-dependent luminol chemiluminescence. These results are consistent with a free radical scavenging role for uric acid. A similar but weaker scavenging effect of xanthine may also contribute to the observed differences in chemiluminescent yields between both substrates.  相似文献   

7.
8.
9.
The stability of the tautomers of each of the three important substrates of xanthine oxidase, xanthine, 2-oxo-6-methylpurine, and lumazine, was examined by quantum mechanical calculations. The geometries of these tautomers were optimized at the AM1, Hartree-Fock (HF/6-31G), and hybrid Hartree-Fock/density functional theory (B3LYP/6-31G(d)) levels of theory. The single point energies of some of the more stable tautomers for each of the substrates were calculated at the B3LYP/6-311 +G(2d,p) level of theory. The Conductor Polarized Continuum Model (CPCM) was used to evaluate the solvent effects on the relative stabilities of these tautomers. The calculations clearly identify the lowest energy tautomeric form for xanthine and lumazine. On the other hand, there appear to be three tautomers for 2-oxo-6-methylpurine, with only minor energetic differences in vacuo. In water, however, only one of them predominates. The lowest energy tautomers presumably represent the predominant tautomeric forms at the molybdenum center of xanthine oxidase during catalysis. Implications of these computational results are discussed in the context of enzyme catalysis.  相似文献   

10.
Fractionation of the extract of Aspergillus niger. IFB-E003, an endophyte in Cyndon dactylon, gave four known compounds naphtho-gamma-pyrones rubrofusarin B, fonsecinone A, asperpyrone B and aurasperone A, which were further investigated biologically. Rubrofusarin B was shown to be cytotoxic to the colon cancer cell line SW1116 (IC50: 4.5 microgml-1), and aurasperone A inhibitory on XO (xanthine oxidase) (IC50: 10.9 micromoll-1). Moreover, the four naphtho-gamma-pyrones exhibited growth inhibitions against the five test microbes with MICs ranging in between 1.9 and 31.2 microgml(-1). The present recognition of rubrofusarin B and aurasperone A as strong co-inhibitors on XO, colon cancer cell and some microbial pathogens is of significance for the imperative discovery of new relevant therapeutic agents.  相似文献   

11.
Hyperoxia increases H2O2 production by brain in vivo   总被引:9,自引:0,他引:9  
Hyperoxia and hyperbaric hyperoxia increased the rate of cerebral hydrogen peroxide (H2O2) production in unanesthetized rats in vivo, as measured by the H2O2-mediated inactivation of endogenous catalase activity following injection of 3-amino-1,2,4-triazole. Brain catalase activity in rats breathing air (0.2 ATA O2) decreased to 75, 61, and 40% of controls due to endogenous H2O2 production at 30, 60, and 120 min, respectively, after intraperitoneal injection of 3-amino-1,2,4-triazole. The rate of catalase inactivation increased linearly in rats exposed to 0.6 ATA O2 (3 ATA air), 1.0 ATA O2 (normobaric 100% O2) and 3.0 ATA O2 (3 ATA 100% O2) compared with 0.2 ATA O2 (room air). Catalase inactivation was prevented by pretreatment of rats with ethanol (4 g/kg), a competitive substrate for the reactive catalase-H2O2 intermediate, compound I. This confirmed that catalase inactivation by 3-amino-1,2,4-triazole was due to formation of the catalase-H2O2 intermediate, compound I. The linear rate of catalase inactivation allows estimates of the average steady-state H2O2 concentration within brain peroxisomes to be calculated from the formula: [H2O2] = 6.6 pM + 5.6 ATA-1 X pM X [O2], where [O2] is the concentration of oxygen in ATA that the rats are breathing. Thus the H2O2 concentration in brains of rats exposed to room air is calculated to be about 7.7 pM, rises 60% when O2 tension is increased to 100% O2, and increases 300% at 3 ATA 100% O2, where symptoms of central nervous system toxicity first become apparent. These studies support the concept that H2O2 is an important mediator of O2-induced injury to the central nervous system.  相似文献   

12.
Spin-trapping techniques and electron spin resonance (ESR) spectroscopy were used to study the relationship between the effect of streptozotocin (STZ) on pancreatic beta-cells and free radical formation by these cells. Results showed that STZ enhanced generation of the DMPO-OH radical adduct, which is a degradation product of the superoxide anion (O2-) in the presence of cellular components, in a hypoxanthine-xanthine oxidase (XOD) system with a homogenate of beta-cells. This enhancing effect was also observed in a system without cellular components; STZ increased the signal height due to the O2- radical in a concentration-dependent manner and caused a maximum of 150% enhancement at a concentration of 1.5 mM. Thus, STZ seemed to enhance the generation of the O2- radical in the XOD system, probably by some mechanism of its interaction with XOD. Pancreatic beta-cells exhibited a high XOD activity and a very low superoxide dismutase activity. Therefore, the present result supports the possibility that the cytotoxic effect of STZ is closely related to free radical generation in pancreatic beta-cells.  相似文献   

13.
The high-speed supernatant from homogenates of rat small intestine contains a heat-stable, dialyzable factor which showed a time-dependent inhibition of peroxidase activity in salt extracts of the tissue. The inhibitor was purified by chromatography on Dowex 50W-X8 and identified as xanthine. The inhibition of peroxidase by xanthine was prevented by allopurinol, an inhibitor of xanthine oxidase, and hypoxanthine was also found to be inhibitory. H2O2, produced in the reaction catalyzed by xanthine oxidase, was shown to be directly responsible for the observed inhibition. The time-dependent loss of peroxidase activity in the presence of xanthine or hypoxanthine occurred more rapidly in NH4Cl than in CaCl2 extracts of small intestine and was due to the difference in the initial concentration of H2O2 in these two extracts. The possible relationship between peroxidase and xanthine oxidase in the rat small intestine is discussed.  相似文献   

14.
15.
16.
A 'null' activity variant for the major liver isozyme of aldehyde oxidase (AOX-1) in adult male mice and an electrophoretically distinct, high activity variant of the second liver isozyme (AOX-2) were used to examine the segregation of the genetic loci encoding these enzymes (Aox-1 and Aox-2 respectively) in breeding studies. A single recombinant between these loci was observed among the 147 backcross progeny examined, which confirms a previous report (Holmes, 1979) for close linkage and genetic distinctness of the two loci. An activity variant for mouse liver xanthine oxidase (XOX) is also reported which behaved as though controlled by codominant alleles at a single locus (designated Xox-1 ). Genetic analyses showed that the Xox-1 locus segregated independently of the multiple- A ox loci.  相似文献   

17.
Mammalian xanthine oxidoreductase can be converted from the dehydrogenase to the oxidase form, either reversibly by formation of disulfide bridges or irreversibly by proteolytic cleavage within the xanthine oxidoreductase protein molecule. A tightly packed amino acid cluster stabilizes the dehydrogenase form, and disruption of this cluster is accompanied with rearrangement of the active site loop. Here, we show that the conversion occurs in the presence of guanidine-HCl or urea. We propose that xanthine dehydrogenase and oxidase are in a thermodynamic equilibrium that can be shifted by disruption of the amino acid cluster with a denaturant.  相似文献   

18.
Interaction of Cu2+ ion with milk xanthine oxidase   总被引:1,自引:0,他引:1  
The interaction of Cu2+ ion with milk xanthine oxidase (XO) has been studied by optical spectroscopy, circular dichroism, ESR and transient kinetic techniques. It is observed that XO forms optically observable complexes with Cu2+ ion. The pH dependence studies of the formation of Cu2+-XO complex by optical spectroscopy and circular dichroism show that at least one ionizable group may be responsible for the formation of the complex. The EPR studies show that Cu2+ ion binds to XO with sulfur and nitrogenous ligands. The transient kinetic study of the interaction of Cu2+ with XO shows the existence of two Cu2+ bound XO complexes formed at two different time scales of the interaction, one at < or =5 ms and the other one at around 20 s. The complex formed at longer time scale may be responsible for the inhibition of the enzyme activity.  相似文献   

19.
A method to purify bovine liver xanthine oxidase in described, with which samples of 256-fold specific activity with respect to the initial homogenate are obtained. Bovine liver xanthine oxidase and chicken liver xanthine dehydrogenase with oxygen as electron acceptor exhibit similar profile in pKM and log V versus pH plots. With NAD+ as electron acceptor a different profile in the pKM xanthine plot is obtained for chicken liver xanthine dehydrogenase. However three inflection points at the same pH values appear in all plots. Both enzymes are irreversibly inhibited by pCMB and reversibly by N-ethylmaleimide and by iodoacetamide, with competitive and uncompetitive type inhibitions respectively. These results suggest that NAD+ alters the enzymatic action since its binding to the enzyme antecedes the binding of xanthine to the xanthine oxidase molecule, without undergoing itself any modification. 0.15 M DDT of DTE treatment of bovine liver xanthine oxidase gives to the enzyme a permanent activity with NAD+ without modifying its activity with oxygen. The enzyme thus treated produces parallel straight lines in Lineweaver-Burk plots.  相似文献   

20.
1. The xanthine oxidase of cow's milk, crude or purified, appears as an oxidase (type O), and can be converted almost completely into a NAD(+)-dependent dehydrogenase (type D) by treatment with dithioerythritol or dihydrolipoic acid, but only to a small extent by other thiols. 2. The D form of the enzyme is inhibited by NADH, which competes with NAD(+). 3. The kinetic constants of the two forms of the enzyme are similar to those of the corresponding forms of rat liver xanthine oxidase. 4. Milk xanthine oxidase is converted into an irreversible O form by pretreatment with chymotrypsin, papain or subtilisin, but only partially with trypsin. 5. The enzyme as purified shows a major faster band and a minor slower band on gel electrophoresis. The slower band is greatly reinforced after xanthine oxidase is converted into the irreversible O form by chymotrypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号