首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study, we demonstrated that transgenic Lotus plants producing opines (which are small amino acid and sugar conjugates) specifically favor growth of opine-degrading rhizobacteria. The opine-induced bias was repeated and demonstrated with another soil type and another plant species (Solanum nigrum). This phenomenon is therefore independent of both soil type and plant species.  相似文献   

2.
We studied the influence of eight nonleguminous grassland plant species belonging to two functional groups (grasses and forbs) on the composition of soil denitrifier communities in experimental microcosms over two consecutive years. Denitrifier community composition was analyzed by terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified nirK gene fragments coding for the copper-containing nitrite reductase. The impact of experimental factors (plant functional group, plant species, sampling time, and interactions between them) on the structure of soil denitrifier communities (i.e., T-RFLP patterns) was analyzed by canonical correspondence analysis. While the functional group of a plant did not affect nirK-type denitrifier communities, plant species identity did influence their composition. This effect changed with sampling time, indicating community changes due to seasonal conditions and a development of the plants in the microcosms. Differences in total soil nitrogen and carbon, soil pH, and root biomass were observed at the end of the experiment. However, statistical analysis revealed that the plants affected the nirK-type denitrifier community composition directly, e.g., through root exudates. Assignment of abundant T-RFs to cloned nirK sequences from the soil and subsequent phylogenetic analysis indicated a dominance of yet-unknown nirK genotypes and of genes related to nirK from denitrifiers of the order Rhizobiales. In conclusion, individual species of nonleguminous plants directly influenced the composition of denitrifier communities in soil, but environmental conditions had additional significant effects.  相似文献   

3.
Competitive ability, the ability to generate legacy effects, and the potential to benefit from priority, individually or interactively, are traits that may increase the invasive potential of plants. In this project we examine these three traits in three invasive species (Agropyron cristatum, Bromus tectorum, and Taeniatherum caput-medusae). Specifically in this study, we examine competitive effects of these invasive species, the ability of these invasive species to generate legacy effects (as plant–soil feedback), and the potential of these three species benefit from priority (being sown concurrently, 30 days before, and 30 days after the restoration species) in a greenhouse study using field collected soil. Our results suggest that all three invasive species can benefit from priority and all three have high competitive ability. However, only A. cristatum benefited from legacy effects of plant–soil feedback.  相似文献   

4.
Using a binary tumor-inducing (Ti) plasmid vector system, several plant species were transformed with a kanamycin resistance marker (neomycin phosphotransferase gene). Four Nicotiana species, seven tomato cultivars, two potato cultivars, and Arabidopsis thaliana were transformed by the binary vector transformation method. In this method, various plant organ pieces were co-cultivated with Agrobacterium tumefaciens cells carrying the binary vector, pGA472, and a helper Ti plasmid. We have also demonstrated that a wild type Ti plasmid can be used as a helper to obtain a transformed plant.  相似文献   

5.
To investigate the effects of soil type on seed persistence in a manner that controlled for location and climate variables, three weed species—Gomphocarpus physocarpus (swan plant), Avena sterilis ssp. ludoviciana (wild oat) and Ligustrum lucidum (broadleaf privet)—were buried for 21 months in three contrasting soils at a single location. Soil type had a significant effect on seed persistence and seedling vigour, but soil water content and temperature varied between soils due to differences in physical and chemical properties. Warmer, wetter conditions favoured shorter persistence. A laboratory-based test was developed to accelerate the rate of seed ageing within soils, using controlled superoptimal temperature and moisture conditions (the soil-specific accelerated ageing test, SSAAT). The SSAAT demonstrated that soil type per se did not influence seed longevity. Moreover, the order in which seeds aged was the same whether aged in the field or SSAAT, with L. lucidum being shortest-lived and A. sterilis being longest-lived of the three species.  相似文献   

6.
Plant-soil feedback responses for native and invasive plant species are well documented, but little is known about how feedback effects from the soil biota community affect plant interactions with herbivores. Here we examine whether changes of the soil biota community by the successful invader Solidago canadensis influence growth and herbivore susceptibility of two coexisting native plant species (Tanacetum vulgare, Melilotus albus). Root zone soil from two different habitat types (‘urban’ and ‘suburban’) was collected and used as inocula in a plant-soil feedback study. Each plant species was grown either in its own soil biota community or with the community with a history from the competitive invasive or native plant species. To identify potential drivers of responses to the different soil biota communities, we analyzed root colonization by arbuscular mycorrhizal fungi and dark-septate endophytes (DSE), and the community composition of soil inhabiting nematodes at the end of our experiment. Results show that S. canadensis and M. albus were not affected by soil history. In contrast, T. vulgare showed increased plant growth in ‘foreign’ soil derived from S. canadensis root zone compared with its ‘home’ soil suggesting a growth promotion by the soil biota community of S. canadensis. From the examined drivers, the abundance of DSE explained the growth response of T. vulgare to the S. canadensis soil biota community best. However, shoot herbivory by banded snails (Cepaea nemoralis, C. hortensis) was not affected by soil history, but by the habitat type where the soil inocula originated. Our study shows that a native plant species may profit from the presence of an invasive competitor mediated by changes in the soil biota community.  相似文献   

7.
The overall effect of a live soil inoculum collected from nature on plant biomass is often negative. One hypothesis to explain this phenomenon is that the overall net pathogenic effect of soil microbial communities reduces plant performance. Induced plant defenses triggered by the application of the plant hormones jasmonic acid (JA) and salicylic acid (SA) may help to mitigate this pathogenic effect of live soil. However, little is known about how such hormonal application to the plant affects the soil and how this, in turn, impacts plant growth. We grew four plant species in sterilized and inoculated live soil and exposed their leaves to two hormonal treatments (JA and SA). Two species (Jacobaea vulgaris and Cirsium vulgare) were negatively affected by soil inoculation. In these two species foliar application of SA increased biomass in live soil but not in sterilized soil. Two other species (Trifolium repens and Daucus carota) were not affected by soil inoculum and for these two species foliar application of SA reduced plant biomass in both the sterilized and live soil. Application of JA reduced plant biomass in both soils for all species. We subsequently carried out a multiple generation experiment for one of the plant species, J. vulgaris. In each generation, the live soil was a mixture of 10% soil from the previous generation and 90% sterilized soil and the same hormonal treatments were applied. The negative effects of live soil on plant biomass were similar in all four generations, and this negative effect was mitigated by the application of SA. Our research suggests that the application of SA can mitigate the negative effects of live soil on plant growth. Although the inoculum of soil containing a natural live soil microbial community had a strong negative effect on the growth of J. vulgaris, we found no evidence for an increase or decrease in negative plant-soil feedback in either the control or the SA treated plants. Also plant performance did not decrease consistently with succeeding generations.  相似文献   

8.
采用分室培养系统,模拟正常水分和干旱胁迫两种环境条件,探讨不同丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对紫花苜蓿(Medicago sativa L.)生长和土壤水稳性团聚体的影响.试验条件下,Glomus intraradices对苜蓿根系的侵染率均显著高于Acaulospora scrobiculata和Diversispora spurcum接种处理.正常水分条件下,供试AM真菌均能显著提高植株生物量及磷浓度.干旱胁迫显著抑制了植株生长和菌根共生体发育,总体上菌根共生体对植株生长没有明显影响,接种D.spurcum甚至趋于降低植株生物量;同时,仅有G.intraradices显著提高了植株磷浓度.AM真菌主要影响到>2mm的水稳性团聚体数量,以G.intraradices作用效果最为显著.在菌丝室中,G.intraradices显著提高了总球囊霉素含量.研究表明AM真菌对土壤大团聚体形成具有积极作用,而菌根效应因土壤水分条件和不同菌种而异,干旱胁迫下仅有G.intraradices对土壤结构和植物生长表现出显著积极作用.在应用菌根技术治理退化土壤时,需要选用抗逆性强共生效率高的菌株,对于不同AM真菌抗逆性差异的生物学与遗传学基础尚需进一步研究.  相似文献   

9.
The recognition of a species as invasive is generally accepted when it comes from another continent or even from another country, but requires strong evidences of negative impacts to support control actions when the invasive species comes from another region in the same country. Schyzolobium parahyba – the ‘guapuruvu’, is a Brazilian tree native from the evergreen type of the Atlantic Forest, which has been recorded as invader in a number of remnants of the Seasonally Semideciduous Forest – SSF. We hypothesized that this giant and fast growing invasive tree changes the structure and composition of the understory, thus impairing the forest dynamics. We assessed the invasive population in the whole fragment, and, within the portion invaded, we sampled the regenerating plant community 1) under the largest alien trees, 2) under a native species with similar ecology (Peltophorum dubium), and 3) randomly in the forest. Density, basal area and richness under S. parahyba were remarkably lower than under the equivalent native species or in the understory as a whole. Floristic composition of the plant community was also distinct under S. parahyba, possibly due to increased competition for soil water. Even though the alien species has occupied, as yet, a small proportion of the forest fragment, it dominates the overstory and threatens the regeneration processes under its canopy. In view of our findings, we recommend extirpation of the species from SSF, as well as avoiding cultivation of the species away from its native range.  相似文献   

10.
Earthworms are known to generally increase plant growth. However, because plant-earthworm interactions are potentially mediated by soil characteristics the response of plants to earthworms should depend on the soil type. In a greenhouse microcosm experiment, the responsiveness of plants (Veronica persica, Trifolium dubium and Poa annua) to two earthworm species (in combination or not) belonging to different functional groups (Aporrectodea. caliginosa an endogeic species, Lumbricus terrestris an anecic species) was measured in term of biomass accumulation. This responsiveness was compared in two soils (nutrient rich and nutrient poor) and two mineral fertilization treatments (with and without). The main significant effects on plant growth were due to the anecic earthworm species. L. terrestris increased the shoot biomass and the total biomass of T. dubium only in the rich soil. It increased also the total biomass of P. annua without mineral fertilization but had the opposite effect with fertilization. Mineral fertilization, in the presence of L. terrestris, also reduced the total biomass of V. persica. L. terrestris did not only affect plant growth. In P. annua and V. persica A. caliginosa and L. terrestris also affected the shoot/root ratio and this effect depended on soil type. Finally, few significant interactions were found between the anecic and the endogeic earthworms and these interactions did not depend on the soil type. A general idea would be that earthworms mostly increase plant growth through the enhancement of mineralization and that earthworm effects should decrease in nutrient-rich soils or with mineral fertilization. However, our results show that this view does not hold and that other mechanisms are influential.  相似文献   

11.
Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.  相似文献   

12.
The abundance of microbes in soil is thought to be strongly influenced by plant productivity rather than by plant species richness per se. However, whether this holds true for different microbial groups and under different soil conditions is unresolved. We tested how plant species richness, identity and biomass influence the abundances of arbuscular mycorrhizal fungi (AMF), saprophytic bacteria and fungi, and actinomycetes, in model plant communities in soil of low and high fertility using phospholipid fatty acid analysis. Abundances of saprophytic fungi and bacteria were driven by larger plant biomass in high diversity treatments. In contrast, increased AMF abundance with larger plant species richness was not explained by plant biomass, but responded to plant species identity and was stimulated by Anthoxantum odoratum. Our results indicate that the abundance of saprophytic soil microbes is influenced more by resource quantity, as driven by plant production, while AMF respond more strongly to resource composition, driven by variation in plant species richness and identity. This suggests that AMF abundance in soil is more sensitive to changes in plant species diversity per se and plant species composition than are abundances of saprophytic microbes.  相似文献   

13.
Quantifying target microbial populations in complex communities remains a barrier to studying species interactions in soil environments. Quantitative PCR (qPCR) assays were developed for quantifying pathogenic Streptomyces scabiei and antibiotic-producing Streptomyces lavendulae strains in complex soil communities. This assay will be useful for evaluating the competitive dynamics of streptomycetes in soil.Streptomyces spp. are ubiquitous soil bacteria that are noted for their capacity to produce a vast array of bioactive compounds, including antibiotics (10). Antibiotic-mediated species interactions are believed to be important to Streptomyces fitness and plant disease biocontrol in soil, and yet quantitative data on Streptomyces interactions in soil are limited. Moreover, because the impacts of one species on another can be mediated through interactions with other microbes in the community, detecting these impacts requires a sensitive and accurate method for quantifying the target populations within a complex community. Here, we describe a sensitive and specific assay that targets a short hypervariable region of the 16S rRNA gene to distinguish among Streptomyces organisms in complex soil communities. Streptomyces strains DL93 (Streptomyces lavendulae, an antibiotic producer that is effective in plant disease biocontrol [9]) and DL87 (Streptomyces scabiei, a plant pathogen) were studied in the present work. This approach has significant potential to shed light on the diversity and complexity of Streptomyces species interactions in soil.  相似文献   

14.
The soil microbial community is essential for maintaining ecosystem functioning and is intimately linked with the plant community. Yet, little is known on how soil microbial communities in the root zone vary at continental scales within plant species. Here we assess the effects of soil chemistry, large-scale environmental conditions (i.e. temperature, precipitation and nitrogen deposition) and forest land-use history on the soil microbial communities (measured by phospholipid fatty acids) in the root zone of four plant species (Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica) in forests along a 1700 km latitudinal gradient in Europe.Soil microbial communities differed significantly among plant species, and soil chemistry was the main determinant of the microbial community composition within each plant species. Influential soil chemical variables for microbial communities were plant species-specific; soil acidity, however, was often an important factor. Large-scale environmental conditions, together with soil chemistry, only explained the microbial community composition in M. effusum and P. nemoralis. Forest land-use history did not affect the soil microbial community composition.Our results underpin the dominant role of soil chemistry in shaping microbial community composition variation within plant species at the continental scale, and provide insights into the composition and functionality of soil microbial communities in forest ecosystems.  相似文献   

15.
Investigations into the edaphic associations, host affiliations and soil depth of dark septate endophytes (DSE) in arid desert environments can help explain their spatial distribution and the response mechanisms in desert ecosystems. Soils were sampled to a depth of 50 cm in the rhizospheres of Psammochloa villosa, Hedysarum laeve and Artemisia ordosica in the Mu Us sandland of northwest China in July 2015. The plant species and soil depth significantly influenced the distribution and colonization of DSE. Hyphal and total root colonization were significantly higher under P. villosa than the others in the 0–20 cm layer. The maximum colonization of P. villosa and H. laeve occurred in the 10–20 cm and 20–30 cm soil layers, respectively, while 30–40 cm soil layer under A. ordosica. Of twelve DSE species isolated from the roots of these plants, Phoma radicina and Bipolaris zeae were reported in desert ecosystems for the first time. Hyphal colonization was significantly and positively correlated with soil total nitrogen (TN) and significantly and negatively correlated with the soil carbon/nitrogen (C/N) ratio. Microsclerotial colonization was significantly and positively correlated with soil organic carbon (SOC), and total colonization was significantly and positively correlated with soil TN and total phosphorus (TP) and significantly and negatively correlated with soil C/N. Variation of DSE colonization was mostly attributed to effects of plant species. We concluded that the species composition and colonization of the DSE fungi were influenced by the plant species, soil depth and soil nutrient availability in this desert ecosystem. This research provides a basis for further understanding the ecological adaptability of DSE and their roles in promoting vegetation restoration and reducing desertification in arid ecosystems.  相似文献   

16.
The mesic Caspian (Hyrcanian) forest and ecotone communities provide a marked contrast to the arid and semiarid landscapes associated with most of the territory of Iran. To date, the ecological characteristics of these habitats, threatened and of conservation importance, have been little studied. Accordingly, ecological profiles of some important plant species of these communities have been assessed along two altitudinal gradients (300–2300 m a.s.l.). Vegetation and soils were sampled every 100 m in elevation, with the data subsequently analyzed using TWINSPAN and corrected frequency (CF) analyses. Relationships between soil variables (subdivided into three classes, the lowest, the middle and the upper third of all values) and herbaceous and shrub species (presence/absence data) were analyzed by the polythetic divisive classification method. 379 plant species and eleven soil variables – N, P, K, CaCO3, EC, pH, organic matter, C/N ratio and percentage of sand, clay and silt – were considered. The ecological profile method was used to evaluate the affinity and significance of associations between the probability of species’ occurrence and topsoil characteristics found by the polythetic method. Five vegetation groups were identified: two groups, with Acer campestre and Quercus macranthera in the tree layer and Veronica mazanderanae and Phuopsis stylosa as herbs, were restricted to forest-steppe ecotones and the upper mountain areas. Three groups, with Acer velutinum, Ruscus hyrcanus, Carpinus betulus, Danae racemosa, Fagus orientalis and Aruncus vulgaris as indicator species, occurred in the forest itself. Of the 42 plant species assessed as being of particular importance, 13 had significant relationships with eight soil factors. Thus, certain species, including endemic plant species of restricted distribution and conservation importance, can be used as indicators of particular soil conditions in the Hyrcanian forest area.  相似文献   

17.
Plant/soil microbial community feedback can have important consequences for species composition of both the plant and soil microbial communities, however, changes in nutrient availability may alter plant reliance on mycorrhizal fungi. In this research, we tested whether plant/soil community feedback occurs and if increased soil fertility altered the plant/soil community interactions. In two greenhouse experiments we assessed plant and AM fungal performance in response to different soils (and their microbial communities), collected from under three co-occurring plants in serpentine grasslands, and nutrient treatments. The first experiment consisted of two plant species (Andropogon gerardii, Sorghastrum nutans), their soil communities, and three nutrient treatments (control, calcium, N-P-K), while the second experiment used three plant species (first two and Schizachyrium scoparium), their soil communities collected from a different site, and two nutrient treatments (control, N-P-K). Plant/soil community feedback was observed with two of the three species and was significantly affected by nutrient enrichment. Negative Sorghastrum/soil feedback was removed with the addition of N-P-K fertilizer at both sites. Andropogon/soil feedback varied between sites and nutrient treatments, while no differential Schizachyrium growth relative to soil community was observed. Addition of N-P-K fertilizer to the nutrient poor serpentine soils increased plant biomass production and affected plant/soil community interactions. Calcium addition did not affect plant biomass, but was associated with significant increases in fungal colonization regardless of plant species or soil community. Our results indicate that nutrient enrichment affected plant/soil community feedback, which has the potential to affect plant and soil community structure.  相似文献   

18.
《农业工程》2020,40(2):158-165
Chromium is the second most common metal pollutant in the soil, sediments and groundwater, due to its extensive industrial application, hence posing a serious environmental concern. Various remediation approaches including phytoremediation have been proposed to remediate chromium polluted waters and soils. In the present research, a total of sixty-one plant species belongs to thirty families were analyzed for the concentration of Chromium. Chromium was analyzed in the soil of the root zone, root and shoot of each plant. The concentration of chromium in the soil of different sites and plant parts (roots and shoots) was found in mg/kg in the range of 0.33–48.73, 8–1233.3 and 10.23–568.33 respectively. The highest concentration of chromium was found in the soil of site Site 41 (48.73 mg/kg) followed by Site 18 (47.83 mg/kg) and Site 6 (45.33 mg/kg). Among the analyzed plants, the highest concentration of chromium in mg/kg was found in the root of Cannabis sativa (1233.3) while its highest concentration was found in the shoot of Allium griffithianum (568.33). Phytoremediation potential of the analyzed plants was evaluated by the calculation of Bioconcentration Factor (BCF), Translocation Factor (TF) and Biological Accumulation Coefficient (BAC). Thirty-eight plant species showed feasibility for the phytostabilization of chromium (Cr_Excluders) based on BCF value and the concentration of chromium in the root. Plants i.e. Argyrolobium stenophyllum, Silybum marianum, Bryophyllum daigremontianum, Limonium macrorhabdon, Calendula arvensis and Delphinium suave were found the most efficient plant for the phytostabilization of chromium. Fifteen plant species showed feasibility for the phytoextraction of chromium (Cr_Indicators) based on TF value. The most efficient plant's species among them for the phytoextraction of chromium are Rosularia adenotricha, Catharanthus roseus, Allium griffithianum, Himalaiella heteromalla, Stellaria media, Salvia moorcroftiana and Marrubium vulgare. Based on BCFs, TFs and BACs value and the concentration of chromium in plant shoot six plant species Allium griffithianum, Catharanthus roseus, Himalaiella heteromalla, Geranium rotundifolium, Marrubium vulgare and Solanum nigrum were found chromium hyperaccumulators.  相似文献   

19.
Intraspecific leaf trait variations are becoming a topic of interest for many ecologists because individual-based traits are essentially the drivers of variations at the community level. Six coexisting major tree species in an old-growth temperate forest, Northeast China (i.e., Abies nephrolepis, Pinus koraiensis, Acer mono, Fraxinus mandshurica, Tilia amurensis, and Ulmus laciniata) were sampled, and three habitat types (i.e., Hab I: high soil organic carbon with a moderate slope; Hab II: low soil organic carbon with a gentle slope; and Hab III: low soil organic carbon with a strong slope) were used in the plot. We performed a two-way ANOVA to compare the specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), and leaf carbon content (LCC) between saplings (1 < DBH ≤ 5 cm) and adults (DBH ≥ 10 cm) and between habitat types within species. We simultaneously evaluated the effects of life stage, plant functional type, and habitat type on the six leaf traits. Our results showed that life stage and habitat type had varied influences on the leaf traits of the six species. Life stage was an important determinant for all leaf traits. Plant functional type was included in the best models for SLA, LNC, and LCC. Habitat type had a greater influence on LDMC than SLA. Meanwhile, habitat type had a greater influence on LNC and LPC than LCC. The correlation between leaf traits with local environmental factors varied across different plant functional types and life stages. We suggest conducting individual-based analyses of leaf trait variations according to plant functional type and life stage to understand the plant life strategies along an environmental gradient may improve understanding of the forest dynamics in an old-growth temperate forest.  相似文献   

20.
Marion Island is a Sub-Antarctic island made up of distinct ecological habitats based on soil physiochemical, plant cover and physical characteristics. The microbial diversity and ecological determinants in this harsh Sub-Antarctic environment are largely uncharacterized. Actinobacteria have diverse ecological functions related to soil and plant functioning. This study was aimed at characterizing the diversity and community structures of the dominant actinobacteria in the distinct habitats and to identify their determinant soil and plant characteristics. Using the 16S rRNA gene, the denaturing gradient gel electrophoresis patterns and clone library diversity were correlated with the soil and plant characteristics. Multivariate statistical methods were also used to identify determinant soil and plant characteristics. Salinity and pH were the most important soil determinants, and a number of important site-specific plant species may have been important. The Coastal Fellfield Habitat was dominated by sequences of the suborders Micrococcineae (44%) and Propionibacterineae (18%), with salinity identified as the principal determinant. The Cotula Herbfield Habitat was dominated by Frankineae (37%) and Streptosporangineae (38%), which were correlated with organic nutrient concentrations. The Wet Mire Habitat was dominated by Acidimicrobineae (61%), with moisture and organic carbon content as principal components. Culture-dependent studies were complementary to culture-independent studies with the majority of actinobacteria isolated not identified in 16S rRNA gene clone libraries. This study demonstrates how the soil physiochemical characteristics and plant species independently determine the community structures of the dominant actinobacteria in distinct ecological habitats. These factors subsequently influence their ecological adaptation, roles and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号