首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction. Consequently, our findings have important implications for the understanding of E. coli replication and Red recombination.  相似文献   

2.
Dda, one of three helicases encoded by bacteriophage T4, has been well-characterized biochemically but its biological role remains unclear. It is thought to be involved in origin dependent DNA replication, recombination-dependent replication, anti-recombination, and recombination repair. The Gp32 protein of bacteriophage T4 plays critical roles in DNA replication, recombination, and repair by coordinating protein components of the replication fork and by stabilizing ssDNA. Previous work demonstrated that stimulation of DNA synthesis by Dda helicase appears to require direct Gp32–Dda protein–protein interactions and that Gp32 and Dda form a tight complex in the absence of ssDNA. Here we characterize the effects of Gp32–Dda physical and functional interactions through changes in the duplex DNA unwinding and ATPase activities of Dda helicase in the presence of different variants of Gp32 and different DNA repair and replication intermediate structures. Results show that Gp32–Dda interactions can be enhancing or inhibitory, depending on the Gp32 domain seen by Dda. Protein–protein interactions with Gp32 stimulate the unwinding activity of Dda, an effect associated with increased turnover of ATP, suggesting a higher rate of ATPase-driven translocation. Dda–Gp32 interactions also promote the unwinding of DNA substrates at higher salt concentrations and in the presence of substrate-bound DNA polymerase. Conversely, the formation of Gp32 clusters on ssDNA can inhibit unwinding, suggesting that Gp32–ssDNA formation sterically regulates which portions of replication and recombination intermediates are accessible for processing by Dda helicase. The data suggest a mechanism of replication fork restart in which Gp32 promotes Dda activity in template switching while preventing premature fork progression.  相似文献   

3.
Replication fork reversal (RFR) is a reaction that takes place in Escherichia coli at replication forks arrested by the inactivation of a replication protein. Fork reversal involves the annealing of the leading and lagging strand ends; it results in the formation of a Holliday junction adjacent to DNA double-strand end, both of which are processed by recombination enzymes. In several replication mutants, replication fork reversal is catalysed by the RuvAB complex, originally characterized for its role in the last steps of homologous recombination, branch migration and resolution of Holliday junctions. We present here the isolation and characterization of ruvA and ruvB single mutants that are impaired for RFR at forks arrested by the inactivation of polymerase III, while they remain capable of homologous recombination. The positions of the mutations in the proteins and the genetic properties of the mutants suggest that the mutations affect DNA binding, RuvA-RuvB interaction and/or RuvB-helicase activity. These results show that a partial RuvA or RuvB defect affects primarily RFR, implying that RFR is a more demanding reaction than Holliday junction resolution.  相似文献   

4.
Mating-type switching in the fission yeast Schizosaccharomyces pombe is initiated by a strand-specific imprint located at the mating-type (mat1) locus. We show that the imprint corresponds to a single-strand DNA break (SSB), which is site- but not sequence-specific. We identified three novel cis-acting elements, involved in the formation and stability of the SSB. One of these elements is essential for a replication fork pause next to mat1 and interacts in vivo with the Swi1 protein. Another element is essential for maintaining the SSB during cell cycle progression. These results suggest that the DNA break appears during the S-phase and is actively protected against repair. Consequently, during the following round of replication, a polar double-strand break is formed. We show that when the replication fork encounters the SSB, the leading-strand DNA polymerase is able to synthesize DNA to the edge of the SSB, creating a blunt-ended recombination intermediate.  相似文献   

5.
Lovett ST 《Molecular cell》2003,11(3):554-556
Replication forks frequently break and must be repaired by recombination. A reconstituted reaction now allows the factors that coordinate conversion from a recombination intermediate back to a replication fork to be defined. The PriA protein plays a key role in this control.  相似文献   

6.
7.
We have proposed previously that, in Escherichia coli, blockage of replication forks can lead to the reversal of the fork. Annealing of the newly synthesized strands creates a double-stranded end adjacent to a Holliday junction. The junction is migrated away from the DNA end by RuvAB and can be cleaved by RuvC, while RecBCD is required for the repair of the double-stranded tail. Consequently, the rep mutant, in which replication arrests are frequent and fork reversal occurs, requires RecBCD for growth. We show here that the combination of sbcB sbcCD null mutations restores the viability to rep recBC mutants by activation of the RecF pathway of recombination. This shows that the proteins belonging to the RecF pathway are able to process the DNA ends made by the replication fork reversal into a structure that allows recombination-dependent replication restart. However, we confirm that, unlike sbcB null mutations, sbcB15, which suppresses all other recBC mutant defects, does not restore the viability of rep recBC sbcCD strains. We also show that ruvAB inactivation suppresses the lethality and the formation of double-stranded breaks (DSBs) in a rep recBC recF strain, totally deficient for homologous recombination, as well as in rep recBC mutants. This confirms that RuvAB processing of arrested replication forks is independent of the presence of recombination intermediates.  相似文献   

8.
The Rad52 pathway has a central function in the recombinational repair of chromosome breaks and in the recovery from replication stress. Tolerance to replication stress also depends on the Mec1 kinase, which activates the DNA replication checkpoint in an Mrc1‐dependent manner in response to fork arrest. Although the Mec1 and Rad52 pathways are initiated by the same single‐strand DNA (ssDNA) intermediate, their interplay at stalled forks remains largely unexplored. Here, we show that the replication checkpoint suppresses the formation of Rad52 foci in an Mrc1‐dependent manner and prevents homologous recombination (HR) at chromosome breaks induced by the HO endonuclease. This repression operates at least in part by impeding resection of DNA ends, which is essential to generate 3′ ssDNA tails, the primary substrate of HR. Interestingly, we also observed that the Mec1 pathway does not prevent recombination at stalled forks, presumably because they already contain ssDNA. Taken together, these data indicate that the DNA replication checkpoint suppresses genomic instability in S phase by blocking recombination at chromosome breaks and permitting helpful recombination at stalled forks.  相似文献   

9.
DNA damage checkpoints coordinate the cellular response to genotoxic stress and arrest the cell cycle in response to DNA damage and replication fork stalling. Homologous recombination is a ubiquitous pathway for the repair of DNA double-stranded breaks and other checkpoint-inducing lesions. Moreover, homologous recombination is involved in postreplicative tolerance of DNA damage and the recovery of DNA replication after replication fork stalling. Here, we show that the phosphorylation on serines 2, 8, and 14 (S2,8,14) of the Rad55 protein is specifically required for survival as well as for normal growth under genome-wide genotoxic stress. Rad55 is a Rad51 paralog in Saccharomyces cerevisiae and functions in the assembly of the Rad51 filament, a central intermediate in recombinational DNA repair. Phosphorylation-defective rad55-S2,8,14A mutants display a very slow traversal of S phase under DNA-damaging conditions, which is likely due to the slower recovery of stalled replication forks or the slower repair of replication-associated DNA damage. These results suggest that Rad55-S2,8,14 phosphorylation activates recombinational repair, allowing for faster recovery after genotoxic stress.  相似文献   

10.
Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.  相似文献   

11.
Recent studies in Escherichia coli indicate that the interconversion of DNA replication fork and Holliday junction structures underpins chromosome duplication and helps secure faithful transmission of the genome from one generation to the next. It facilitates interplay between DNA replication, recombination and repair, and provides means to rescue replication forks stalled by lesions in or on the template DNA. Insight into how this interconversion may be catalysed has emerged from genetic, biochemical and structural studies of RecG protein, a member of superfamily 2 of DNA and RNA helicases. We describe how a single molecule of RecG might target a branched DNA structure and translocate a single duplex arm to drive branch migration of a Holliday junction, interconvert replication fork and Holliday junction structures and displace the invading strand from a D loop formed during recombination at a DNA end. We present genetic evidence suggesting how the latter activity may provide an efficient pathway for the repair of DNA double-strand breaks that avoids crossing over, thus facilitating chromosome segregation at cell division.  相似文献   

12.
Restarting stalled replication forks partly depends on the break-induced recombination pathway, in which a DNA double-stranded break (DSB) is created on the stalled replication fork to initiate the downstream recombination cascades. Single-stranded DNA gaps accumulating on stalled replication forks are potential targets for endonucleases to generate DSBs. However, it is unclear how this process is executed and which nucleases are involved in eukaryotic cells. Here, we identify a novel gap endonuclease (GEN) activity of human flap endonuclease 1 (FEN-1), critical in resolving stalled replication fork. In response to replication arrest, FEN-1 interacts specifically with Werner syndrome protein for efficient fork cleavage. Replication protein A facilitates FEN-1 interaction with DNA bubble structures. Human FEN-1, but not the GEN-deficient mutant, E178A, was shown to rescue the defect in resistance to UV and camptothecin in a yeast FEN-1 null mutant.  相似文献   

13.
Binding and melting of D-loops by the Bloom syndrome helicase   总被引:10,自引:0,他引:10  
Bloom syndrome is a rare autosomal disorder characterized by predisposition to cancer and genomic instability. BLM, the structural gene mutated in individuals with the disorder, encodes a DNA helicase belonging to the RecQ family of helicases. These helicases have been established to serve roles in both promoting and preventing recombination. Mounting evidence has implicated a function for BLM during DNA replication; specifically, BLM might be involved in rescuing stalled or collapsed replication forks by a recombination-based mechanism. We have tested this idea by examining the binding and melting activity of BLM on oligonucleotide substrates containing D-loops, DNA structures that model the presumed initial intermediate formed during homologous recombination. We find that BLM preferentially melts those D-loops that are formed more favorably by the strand exchange protein Rad51, but whose polarity could be less favorable for enabling restoration of an active replication fork. We propose a model in which BLM selectively dissociates recombination intermediates likely to be unfavorable for recombination-promoted replication.  相似文献   

14.
Homologous recombination is a universal mechanism that allows repair of DNA and provides support for DNA replication. Homologous recombination is therefore a major pathway that suppresses non-homology-mediated genome instability. Here, we report that recovery of impeded replication forks by homologous recombination is error-prone. Using a fork-arrest-based assay in fission yeast, we demonstrate that a single collapsed fork can cause mutations and large-scale genomic changes, including deletions and translocations. Fork-arrest-induced gross chromosomal rearrangements are mediated by inappropriate ectopic recombination events at the site of collapsed forks. Inverted repeats near the site of fork collapse stimulate large-scale genomic changes up to 1,500 times over spontaneous events. We also show that the high accuracy of DNA replication during S-phase is impaired by impediments to fork progression, since fork-arrest-induced mutation is due to erroneous DNA synthesis during recovery of replication forks. The mutations caused are small insertions/duplications between short tandem repeats (micro-homology) indicative of replication slippage. Our data establish that collapsed forks, but not stalled forks, recovered by homologous recombination are prone to replication slippage. The inaccuracy of DNA synthesis does not rely on PCNA ubiquitination or trans-lesion-synthesis DNA polymerases, and it is not counteracted by mismatch repair. We propose that deletions/insertions, mediated by micro-homology, leading to copy number variations during replication stress may arise by progression of error-prone replication forks restarted by homologous recombination.  相似文献   

15.
Homologous recombination (HR)-based repair during DNA replication can apparently utilize several partially overlapping repair pathways in response to any given lesion. A key player in HR repair is the Sgs1-Top3-Rmi1 (STR) complex, which is critical for resolving X-shaped recombination intermediates formed following bypass of methyl methanesulfonate (MMS)-induced damage. STR mutants are also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU), but unlike MMS treatment, HU treatment is not accompanied by X-structure accumulation, and it is thus unclear how STR functions in this context. Here we provide evidence that HU-induced fork stalling enlists Top3 prior to recombination intermediate formation. The resistance of sgs1Δ mutants to HU is enhanced by the absence of the putative SUMO (Small Ubiquitin MOdifier)-targeted ubiquitin ligase, Uls1, and we demonstrate that Top3 is required for this enhanced resistance and for coordinated breaks and subsequent d-loop formation at forks stalled at the ribosomal DNA (rDNA) replication fork block (RFB). We also find that HU resistance depends on the catalytic activity of the E3 SUMO ligase, Mms21, and includes a rapid Rad51-dependent restart mechanism that is different from the slow Rad51-independent HR fork restart mechanism operative in sgs1Δ ULS1+ mutants. These data support a model in which repair of HU-induced damage in sgs1Δ mutants involves an error-prone break-induced replication pathway but, in the absence of Uls1, shifts to one that is higher-fidelity and involves the formation of Rad51-dependent d-loops.  相似文献   

16.
The budding yeast Srs2 protein possesses 3′ to 5′ DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).  相似文献   

17.
DNA lesions cause stalling of DNA replication forks, which can be lethal for the cell. Homologous recombination (HR) plays an important role in DNA lesion bypass. It is thought that Rad51, a key protein of HR, contributes to the DNA lesion bypass through its DNA strand invasion activity. Here, using model stalled replication forks we found that RAD51 and RAD54 by acting together can promote DNA lesion bypass in vitro through the 'template-strand switch' mechanism. This mechanism involves replication fork regression into a Holliday junction ('chicken foot structure'), DNA synthesis using the nascent lagging DNA strand as a template and fork restoration. Our results demonstrate that RAD54 can catalyze both regression and restoration of model replication forks through its branch migration activity, but shows strong bias toward fork restoration. We find that RAD51 modulates this reaction; by inhibiting fork restoration and stimulating fork regression it promotes accumulation of the chicken foot structure, which we show is essential for DNA lesion bypass by DNA polymerase in vitro. These results indicate that RAD51 in cooperation with RAD54 may have a new role in DNA lesion bypass that is distinct from DNA strand invasion.  相似文献   

18.
The complete and faithful duplication of the genome is an essential prerequisite for proliferating cells to maintain genome integrity. This objective is greatly challenged by DNA damage encountered during replication, which causes fork stalling and in certain cases, fork breakage. DNA damage tolerance (DDT) pathways mitigate the effects on fork stability induced by replication fork stalling by mediating damage-bypass and replication fork restart. These DDT mechanisms, largely relying on homologous recombination (HR) and specialized polymerases, can however contribute to genome rearrangements and mutagenesis. There is a profound connection between replication and recombination: recombination proteins protect replication forks from nuclease-mediated degradation of the nascent DNA strands and facilitate replication completion in cells challenged by DNA damage. Moreover, in case of fork collapse and formation of double strand breaks (DSBs), the recombination factors present or recruited to the fork facilitate HR-mediated DSB repair, which is primarily error-free. Disruption of HR is inexorably linked to genome instability, but the premature activation of HR during replication often leads to genome rearrangements. Faithful replication necessitates the downregulation of HR and disruption of active RAD51 filaments at replication forks, but upon persistent fork stalling, building up of HR is critical for the reorganization of the replication fork and for filling-in of the gaps associated with discontinuous replication induced by DNA lesions. Here we summarize and reflect on our understanding of the mechanisms that either suppress recombination or locally enhance it during replication, and the principles that underlie this regulation.  相似文献   

19.
To investigate the influence of the ribosomal DNA enhancer on initiation of replication and recombination at the ribosomal array, we used yeast S. cerevisiae strains with adjacent, tagged rRNA genes. We found that the enhancer is an absolute requirement for replication fork barrier function, while it only modulates initiation of replication. Moreover, the formation of monomeric extrachromosomal ribosomal circles depends on this element. Our data indicate that DNA double-strand breaks occur at specific sites in the parental leading arm of replication forks stalled at the replication fork barrier. Additionally, nicks upstream of the replication fork barrier were visualized by nucleotide-resolution mapping. They coincide with essential sequences of the mitotic hyperrecombination site HOT1, which previously has been determined at ectopic sites. Interestingly, these nicks are strictly dependent on the replication fork blocking-protein (Fob1), but are replication independent, suggesting that intrachromosomal ribosomal DNA recombination may occur outside of S phase.  相似文献   

20.
We have studied the fate of blocked replication forks with the use of the Escherichia coli priA mutant, in which spontaneously arrested replication forks persist owing to the lack of the major replication restart pathway. Such blocked forks undergo a specific reaction named replication fork reversal, in which newly synthesized strands anneal to form a DNA double-strand end adjacent to a four-way junction. Indeed, (i) priA recB mutant chromosomes are linearized by a reaction that requires the presence of the Holliday junction resolvase RuvABC, and (ii) RuvABC-dependent linearization is prevented by the presence of RecBC. Replication fork reversal in a priA mutant occurs independently of the recombination proteins RecA and RecR. recBC inactivation does not affect priA mutant viability but prevents priA chronic SOS induction. We propose that, in the absence of PriA, RecBC action at reversed forks does not allow replication restart, which leads to the accumulation of SOS-inducing RecA filaments. Our results suggest that types of replication blockage that cause replication fork reversal occur spontaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号