共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Spot blotch, caused by Cochliobolus sativus, is a serious wheat (Triticum aestivum L.) disease in the warm areas of South Asia. Breeding for resistance in the past 15 years has produced limited progress, and newly developed wheat cultivars suffer considerable yield reductions under spot blotch epidemics in the region. Resistance is often controlled by multiple genes with additive effects. Marker‐assisted selection, in combination with field selection, could accelerate the identification of progeny with multiple genes for resistance early in the breeding process. A study was conducted to determine microsatellite markers associated with resistance in the F7 progeny from a cross between the spot blotch‐susceptible Sonalika and resistant G162 wheat genotypes. A parental survey using 171 simple sequence repeats (SSR) primer sets and spread over 21 chromosomes of wheat identified 52% polymorphic loci. However, only 15 polymorphic markers showed association with two bulks, one each of progeny with low and with high spot blotch severity. The detailed analysis indicated that progeny lines with low spot blotch severity could be separated from those with high severity using three SSR markers located on three wheat chromosomes. The findings may be useful in developing a marker‐assisted selection strategy for spot blotch resistance in wheat. 相似文献
3.
Gisele Pereira Domiciano Fabrício Avila Rodrigues Francisco Xavier Ribeiro Vale Maria Santina Xavier Filha Wiler Ribas Moreira Camila Cristina Lage Andrade Sandra Cerqueira Pereira 《Journal of Phytopathology》2010,158(5):334-343
Spot blotch, caused by the fungus Bipolaris sorokiniana, is one of the most important diseases on wheat. The effects of silicon (Si) on this wheat disease were studied. Plants of wheat cultivars BR‐18 and BRS‐208 were grown in plastic pots containing Si‐deficient soil amended with either calcium silicate (+Si) or calcium carbonate (?Si). The content of Si in leaf tissue was significantly increased by 90.5% for the +Si treatment. There was no significant difference between Si treatments for calcium content, so variations in Si accounted for differences in the level of resistance to spot blotch. The incubation period was significantly increased by 40% for the +Si treatment. The area under spot blotch progress curve, number of lesions per cm2 of leaf area, and real disease severity significantly decreased by 62, 36 and 43.5% in +Si treatment. There was no significant effect of Si on lesion size. The role played by total soluble phenolics in the increased resistance to spot blotch of plants from both cultivars supplied with Si was not clear. Plants from cultivar BR‐18 supplied with Si showed the highest values for concentration of lignin‐thioglycolic acid derivatives during the most advanced stages of fungus infection. Chitinase activity was high at the most advanced stages of fungus infection on leaves from both cultivars supplied with Si and may have had an effect on fungus growth based on the reduction of the components of resistance evaluated. Peroxidase activity was found to be high only at 96 h after inoculation of both cultivars supplied with Si. Polyphenoloxidase activity had no apparent effect on resistance regardless of Si treatments. Results revealed that supplying Si to wheat plants can increase resistance against spot blotch. 相似文献
4.
Spot blotch caused by Cochliobolus sativus emerged as a major threat to wheat production in the warmer non-traditional wheat growing areas in the late 1980s. This foliar disease causes significant yield losses annually (15–20% on average in South Asia) endangering the livelihoods of millions of small farmers. Effective measures in the field are needed to mitigate the impact of spot blotch on food security in affected areas. This review summarizes the global knowledge on genetic improvement and crop management strategies to minimize yield losses based on latest field research. Recent studies have shown that spot blotch severity is highly influenced by stress factors affecting crop physiology which in turn affects host tolerance and resistance to the pathogen. Soil nutrient and water stress aggravate spot blotch-induced grain yield losses. Heat stress which is gradually increasing in Asia causes higher levels of disease damage. Genetic improvement is the cornerstone of a sustainable control of spot blotch in all affected regions. Resistance is essentially based on Chinese and South American sources and inter-specific crosses with broadly adapted semi-dwarf germplasm. A list of genotypes consistently reported in the last 10 years to harbor at least partial resistance to spot blotch, along with their inheritance of resistance, has been compiled to help breeding programmes. As the fungus is aggressive under conditions of high relative humidity and heat which in turn influences plant susceptibility, a synthesis of the different tools for scoring disease severity is given. Because resistance is incomplete, the ultimate goal is the accumulation of minor genes of resistance in adapted high yielding genotypes. This paper shows how the use of resistant varieties, timely seeding, adequate fertilization, crop rotation, and the judicious use of fungicides can be part of an integrated management strategy for controlling yield losses due to spot blotch. 相似文献
5.
Zhukov A. V. Lebedeva N. I. Vereshchagin A. G. 《Russian Journal of Plant Physiology》2001,48(1):111-115
The concentration of dry matter and the content of esterified fatty acids in total lipids of roots and etiolated shoots of 3- to 10-day-old seedlings of wheat (Triticum aestivum L.) infected with Bipolaris sorokiniana (Sacc.) Schoemaker, the agent of helminthosporic root rot, were determined in the course of germination. At the onset of germination, fungal infection caused a considerable increase in the dry matter concentration in both roots and shoots due to the enhanced mobilization of seed reserves. However, after the 7th day of germination, dry matter concentration fell below the level of noninfected control seedlings as a result of infection. The content of total lipids rose immediately after infection and always exceeded the control index up to the end of germination, in spite of a continuous decrease in this index in both control and infected seedling. It is concluded that an increase in the content of cellular lipids is a characteristic response of both shoots and roots to the root rot infection of wheat seedlings. 相似文献
6.
7.
Qingmei Han Lili Huang Heinrich Buchenauer Chunming Wang Zhensheng Kang 《Journal of Phytopathology》2010,158(1):22-29
The infection of wheat spikelets by Bipolaris sorokiniana , the causal agent of black point on grains and grain shrivelling, was examined by light and electron microscopy. Conidia of the pathogen germinated 6–12 h after inoculation on the surfaces of the different spike tissues. Extracellular sheaths were observed on germ tubes and appressoria attached to the surfaces of lemma, palea and seeds, but were only scarcely detected on the surface of conidia. Appressoria, frequently found over grooves, formed penetration hyphae invading the epidermal cell walls. Infection process was similar on the surface of the lemma, palea and glume. Growth of the fungus in the epidermal and parenchyma cells was found predominantly in the cell walls, and hyphae also extended intercellularly and intracellularly. Infection of seeds appeared to occur via two ways: (i) direct infection of the outer layers of the cell walls of the pericarp and (ii) through entering the stigma into the pericarp cells. Secretion of host cell wall hydrolytic enzymes at the apex of the penetrating hyphae may facilitate the spread of the fungus. In addition, toxins secreted by the fungus might explain the rapid death of host cells in contact with or distant to fungal cells. A host response to fungal infection involved the development of appositions between cell wall and plasma membrane in cells adjacent to fungal cells. Fungal hyphae were sometimes also surrounded by electron dense material. 相似文献
8.
Zhukov A. V. Lebedeva N. I. Vereshchagin A. G. 《Russian Journal of Plant Physiology》2001,48(2):181-189
The changes of the molecular species composition of esterified fatty acids (FAs) of total and nonextractable lipids were determined in roots and etiolated shoots of 3- to 10-day-old wheat (Triticum aestivumL.) seedlings infected with the fungus Bipolaris sorokiniana, the agent of helminthosporic root rot. A novel technique of assessing the extent of the infection-induced deviation of FA composition, mol %, from the control value was developed. It consists in the quantitative determination of both the deviations in this composition and the extent of contribution of separate FA species to the deviations observed. The application of this technique has shown that, for the total lipids, the maximum of such a deviation, in accordance with the membrane theory of stress, directly coincided in time with the onset of a decrease in the dry matter content in both roots and shoots. In each of these, the deviation was primarily caused by the change in the content of those FA species that usually dominate in a specific group of membrane lipids prevailing in a given organ, viz., plastid glycolipids in shoots and extraplastidal membrane phospholipids in roots. In both cases, C20–C22FAs significantly contributed to the deviations observed. This fact seems to reflect an enhanced formation of epicuticular waxes rich in these FAs on the shoot and root surfaces as an adaptive response of plants to fungal infection. Nonextractable (annular) membrane lipids, because of their vital importance for the survival of plant cells, differed from the total lipids with a far greater stability of their quantitative FA composition under conditions of infection-induced metabolic disturbances. 相似文献
9.
10.
Bengt Bengtsson 《Physiologia plantarum》1982,56(4):415-420
Betula papyrifera Marsh, seedlings adapted very poorly to flooding for up to 60 days. Responses to flooding included increased ethylene production; stomatal closure; leaf senescence; drastic inhibition of shoot growth, cambial growth, and root growth; decay of roots, and death of many seedlings. Flooding inhibited growth of leaves that formed prior to flooding, inhibited formation of new leaves, and induced abscission of old leaves. As a result of extensive leaf abscission, fewer leaves were present after flooding than before flooding was initiated. The drastic reduction in leaf area was associated with greatly decreased growth of the lower stem and roots. No evidence was found of adaptive morphological changes to flooding. The data indicate that intolerance of B. papyrifera seedlings to flooding is an important barrier to regeneration of the species on sites subject to periodic inundation. 相似文献
11.
The Effect of Local Cooling of Cucumber and Wheat Seedlings on Various Kinds of Stress Resistance of Their Leaves and Roots 总被引:1,自引:0,他引:1
Shoots and roots of wheat (Triticum aestivum L., cold-resistant species) and cucumber (Cucumis sativus L., cold-sensitive species) were chilled at 2°C or 10°C, respectively, for 7 h. The changes in cold, heat, and salt resistance in treated leaf and root cells were recorded. Local cooling of the leaf resulted in an increase of its cold and salt tolerance, but its heat tolerance remained unchanged. At the same time, cold tolerance of the root slightly increased as a result of local cooling, but its heat and salt tolerance decreased. Cooling of the shoot did not affect the cold and heat tolerance of root cells but caused a decrease in their salt tolerance. Finally, in the leaf maintained at a normal temperature, there was an increase in all kinds of stress resistance as a result of root cooling. We discuss the possibility of an unspecific change in stress resistance caused by metabolic shifts. These shifts are induced by a signal, which is transmitted inside the plant into plant organs located at a considerable distance from the chilled ones. 相似文献
12.
利用苯丙氨酸解氨酶(PAL,phenylalanine ammonia-lyase)基因保守区域从小麦抗赤霉病材料苏麦3号中克隆获得4个PAL基因,分别命名为Ta PAL1、Ta PAL2、Ta PAL3、Ta PAL4。4个基因的开放阅读框(ORF,open reading frame)长度分别为2142 bp、2016 bp、2118 bp和2139 bp,分别编码714个、672个、706个和713个氨基酸。基因序列比对发现其相似性达到88.35%,所编码的氨基酸相似性为91.92%,氨基酸序列分析表明4个基因都包含HAL-PAL结构域及PAL结构域。通过接种禾谷镰刀菌,利用荧光定量PCR对PAL基因进行表达分析发现,4个PAL基因全部为上调表达,其中Ta PAL2、Ta PAL3和Ta PAL4最为明显。PAL基因的上调表达,说明PAL基因在小麦抵抗赤霉病菌侵染的机制中可能起着重要作用。 相似文献
13.
7-Chloroindoleacetic acid and dichloroindoleacetic acids with a Cl in the 7 position showed anti-auxinic activity and promoted root growth in wheat ( Triticum aestivum L. cv. Diamant II). In contrast, 4-, 5- and 6-chloroindoleatetic acids acted as strong auxins inhibiting the growth of wheat roots. Flax ( Linum usitatissimum L. cv. Concurrent) and cucumber ( Cucumis sativus L. cv. Favör) roots showed similar, but less clear-cut responses. 7-Chloroindoleacetic acid and 4,7-dichloroindoleacetic acid alleviated root growth inhibition in wheat caused by IAA, monochloroindoleacetic acids and benzyladenine. 2,4-D, 4- and 6-chloroindoleacetic acids strongly induced ethylene formation in cucumber seedlings; 4,7- and 6,7-dichloroindoleacetic acids did not, except at high concentrations. The more lipid-soluble dichloroindoleacetic acids were stronger inhibitors of ATP formation in cucumber mitochondria than monochloroindoleacetic acids, while IAA itself had only a very slight effect. 相似文献
14.
Rizky Pasthika Kirana Kumar Gaurav Sanu Arora Gerlinde Wiesenberger Maria Doppler Sebastian Michel Simone Zimmerl Magdalena Matic Chinedu E. Eze Mukesh Kumar Ajla Topuz Marc Lemmens Rainer Schuhmacher Gerhard Adam Brande B. H. Wulff Hermann Buerstmayr Barbara Steiner 《Plant biotechnology journal》2023,21(1):109-121
Aegilops tauschii is the diploid progenitor of the wheat D subgenome and a valuable resource for wheat breeding, yet, genetic analysis of resistance against Fusarium head blight (FHB) and the major Fusarium mycotoxin deoxynivalenol (DON) is lacking. We treated a panel of 147 Ae. tauschii accessions with either Fusarium graminearum spores or DON solution and recorded the associated disease spread or toxin-induced bleaching. A k-mer-based association mapping pipeline dissected the genetic basis of resistance and identified candidate genes. After DON infiltration nine accessions revealed severe bleaching symptoms concomitant with lower conversion rates of DON into the non-toxic DON-3-O-glucoside. We identified the gene AET5Gv20385300 on chromosome 5D encoding a uridine diphosphate (UDP)-glucosyltransferase (UGT) as the causal variant and the mutant allele resulting in a truncated protein was only found in the nine susceptible accessions. This UGT is also polymorphic in hexaploid wheat and when expressed in Saccharomyces cerevisiae only the full-length gene conferred resistance against DON. Analysing the D subgenome helped to elucidate the genetic control of FHB resistance and identified a UGT involved in DON detoxification in Ae. tauschii and hexaploid wheat. This resistance mechanism is highly conserved since the UGT is orthologous to the barley UGT HvUGT13248 indicating descent from a common ancestor of wheat and barley. 相似文献
15.
Uptake of calcium in wheat and cucumber roots 总被引:1,自引:0,他引:1
Uptake of Ca2+ (45 Ca) was investigated in plants of wheat ( Triticum aestivum L. var. Svenno) and cucumber ( Cucumis sativus L. var. Cilla) cultivated in a nutrient solution with various Ca2+ concentrations. The adsorption of Ca2+ was higher in cucumber roots than in wheat roots especially at lower Ca2+ levels in the external medium. The intracellular fraction of Ca2+ was less than 20% of the total Ca2+ in wheat roots and less than 10% of the total Ca2+ in cucumber roots. The uptake of Ca2+ in cucumber was about 40 times higher than in wheat. Transport of Ca2+ in the roots towards the endodermis is suggested to take place mainly in the apoplastic pathway regulated by the availability of negatively charged binding sites along the cell wall continuum. Further transport of Ca2+ towards the stele may involve diffusion of Ca2+ into the symplasm in the vicinity of the endodermis. An active extrusion of Ca2+ towards the stele or towards the external medium is suggested to play a role in the regulation of Ca2+ uptake. 相似文献
16.
Ivanete Tonole Silva Fabrício Ávila Rodrigues José Rogério Oliveira Sandra Cerqueira Pereira Camila Cristina Lage Andrade Patrícia Ricardino Silveira Mariana Maciel Conceição 《Journal of Phytopathology》2010,158(4):253-262
Leaf streak, caused by Xanthomonas translucens pv. undulosa, is the major bacterial disease of wheat in Brazil and other countries worldwide. This study aimed to evaluate the effect of silicon (Si) on disease development and the biochemical mechanisms possibly involved in resistance potentialized by this element. Plants of cv. BR‐18, susceptible to leaf streak, were grown in plastic pots containing Si‐deficient soil amended with either calcium silicate (+Si) or calcium carbonate (?Si). The content of Si increased (P ≤ 0.05) by 96.5% for the +Si when compared with ?Si treatment. There was no difference (P ≥ 0.05) between Si treatments for calcium content on leaf tissue, so variations in Si accounted for differences in the level of resistance to leaf streak. There was no difference (P ≥ 0.05) between Si treatments for incubation period, latent period, necrotic leaf area, and severity estimated by the software quant . However, chlorotic leaf area was reduced (P ≤ 0.05) by 50.2% for the +Si when compared with ?Si treatment. There was no difference (P ≥ 0.05) between Si treatments for the bacteria population on leaf tissue; however, the values seemed to be somewhat lower in the +Si treatment from 4 to 8 days after inoculation (d.a.i.) on leaves from plants supplied with Si. There was no difference (P ≥ 0.05) between Si treatments for electrolyte leakage. The concentration of total soluble phenolics and lignin‐thioglycolic acid (LTGA) derivatives did not show any apparent signs of increase during the course of infection and seemed to be slightly higher on plants not supplied with Si at the most advanced stages of bacterial infection. Chitinase activity was high at the most advanced stages of bacterial infection on leaves from +Si treatment and probably affected bacterial growth on leaf tissue. Peroxidase activity following bacterial infection was not increased by Si, but can be linked with the highest concentration of LTGA derivatives at 12 d.a.i. of plants supplied with Si. Polyphenoloxidase activity did not affect wheat resistance to leaf streak regarding of the Si treatments. The results clearly suggest that supplying Si to wheat plants can increase resistance to leaf streak possibly through an increase in tissue lignification and the participation of chitinases and peroxidases. 相似文献
17.
《Animal : an international journal of animal bioscience》2013,7(4):673-681
Mixed crop–livestock systems, combining livestock and cash crops at farm level, are considered to be suitable for sustainable intensification of agriculture. Ensuring the survival of mixed crop–livestock systems is a challenge for European agriculture: the number of European mixed crop–livestock farms has been decreasing since 1970. Analysis of farming system dynamics may elucidate past changes and the forces driving this decline. The objectives of this study were (i) to identify the diversity of paths that allowed the survival of mixed crop–livestock farming and (ii) to elucidate the driving forces behind such survival. We analysed the variety of farm trajectories from 1950 to 2005. We studied the entire farm population of a case study site, located in the ‘Coteaux de Gascogne’ region. In this less favoured area of south-western France, farmers have limited specialisation. Currently, half of the farms use mixed crop–livestock systems. The data set of 20 variables for 50 farms on the basis of six 10-year time steps was collected through retrospective surveys. We used a two-step analysis including (i) a visual assessment of the whole population of individual farm trajectories and (ii) a computer-based typology of farm trajectories on the basis of a series of multivariate analyses followed by automatic clustering. The European Common Agricultural Policy, market globalisation and decreasing workforce availability were identified as drivers of change that favoured the specialisation process. Nevertheless, farmers’ choices and values have opposed against these driving forces, ensuring the survival of some mixed crop–livestock farming systems. The trajectories were clustered into five types, four of which were compatible with mixed crop–livestock systems. The first type was the maximisation of autonomy by combining crops and livestock. The second type was diversification of production to exploit economies of scope and protect the farm against market fluctuations. The other two types involved enlargement and progressive adaptation of the farm to the familial workforce. The survival of mixed crop–livestock systems in these two types is largely dependent on workforce availability. Only one type of trajectory, on the basis of enlargement and economies of scale, did not lead to mixed crop–livestock systems. In view of the current evolution of the driving forces, maximising autonomy and diversification appear to be suitable paths to deal with current challenges and maintain mixed crop–livestock systems in Europe. 相似文献
18.
B. J. Mulholland J. Craigon C. R. Black J. J. Colls J. Atherton† G. Landon 《Global Change Biology》1998,4(2):121-130
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed. 相似文献
19.
Pestsova E Röder M 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2002,106(1):84-91
Fusarium head blight (FHB, scab) is a fungal disease of wheat and other small cereals that is found in both temperate and semi-tropical regions. FHB causes severe yield and quality losses, but the most-serious concern is the possible mycotoxin contamination of cereal food and feed. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. This study was conducted to identify and map DNA markers associated with FHB resistance genes in wheat. A population of 364 F1-derived doubled-haploid (DH) lines from the cross ’CM-82036’ (resistant)/’Remus’ (susceptible) was evaluated for Type II resistance (spread within the spike) during 2 years under field conditions. Marker analysis was performed on 239 randomly chosen DH lines. Different marker types were applied, with an emphasis on AFLP and SSR markers. Analysis of variance, as well as simple and composite interval mapping, were applied. Three genomic regions were found significantly associated with FHB resistance. The most-prominent effect was detected on the short arm of chromosome 3B, explaining up to 60% of the phenotypic variance for Type II FHB resistance. A further QTL was located on chromosome 5A and a third one on 1B. The QTL regions on 3B and 5A were tagged with flanking SSR markers, the 1B QTL was found associated with the high-molecular-weight glutenin locus. These results indicate that FHB resistance is under control of a few major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these major QTLs involved in FHB resistance appears feasible and should accelerate the development of resistant and agronomically improved wheat cultivars. Received: 25 January 2001 / Accepted: 18 February 2001 相似文献
20.
Akimova T. V. Balagurova N. I. Titov A. F. Meshkova E. A. 《Russian Journal of Plant Physiology》2001,48(4):503-506
Experiments using cucumber (Cucumis sativusL.), wheat (Triticum aestivumL.), and barley (Hordeum vulgareL.) seedlings showed that actinomycin D partially inhibited an increase in the heat-tolerance of leaves heated at 38°C for 7 h but did not affect this index when the roots were heated. Exogenous ABA increased heat-tolerance in both cases. These results, with regard to the data demonstrating an important contribution of protein synthesis to the specific increase in heat-tolerance during the heat acclimation of intact plants, make it possible to conclude that the development of leaf heat-tolerance resulting from the local heating of shoots depends on the induced synthesis of mRNAs and respective proteins. At the same time, there is little or no such dependence during root heating. ABA manifested itself as a factor of a general, nonspecific increase in heat-tolerance during the local heating of both shoots and roots. 相似文献