首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a study on the effect of the fluorescent probe eosin on some of the reactions involved in the conformational transitions that lead to the occlusion of the K(+)-congener Rb(+) in the Na(+)/K(+)-ATPase. Eosin decreases the equilibrium levels of occluded Rb(+), this effect being fully attributable to a decrease in the apparent affinity of the enzyme for Rb(+) since the capacity for occlusion remains independent of eosin concentration. The results can be quantitatively described by a model that assumes that two molecules of eosin are able to bind to the Na(+)/K(+)-ATPase, both to the Rb(+)-free and to the Rb(+)-occluded enzyme regardless of the degree of cation occlusion. Concerning the effect on the affinity for Rb(+) occlusion, transient state experiments show that eosin reduces the initial velocity of occlusion, and that, like ATP, it increases the velocity of deocclusion of Rb(+). Interactions between eosin and ATP on Rb(+)-release experiments seem to indicate that eosin binds to the low-affinity site of ATP from which it exerts effects that are similar to those of the nucleotide.  相似文献   

2.
Occlusion of K(+) or its congeners in the Na(+)/K(+)-ATPase occurs after K(+)-dependent dephosphorylation (physiological route) or in media lacking ATP and Na(+) (direct route). The effects of P(i) or ATP on the kinetics of deocclusion of the K(+)-congener Rb(+) formed by each of the above mentioned routes was independent of the route of occlusion, which suggests that both routes lead to the same enzyme intermediate. The time course of occlusion via the direct route can be described by the sum of two exponential functions plus a small component of very high velocity. At equilibrium, occluded Rb(+) is a hyperbolic function of free [Rb(+)] suggesting that the direct route results in enzyme states holding either one or two occluded Rb(+). Release of occluded Rb(+) follows the sum of two decreasing exponential functions of time, corresponding to two phases with similar sizes. These phases are not caused by independent physical compartments. The rate constant of one of the phases is reduced up to 30 times by free Rb(+). When Rb(+) is the only pump ligand, the kinetics of occlusion and deocclusion through the direct route are consistent with an ordered-sequential process with additional independent step(s) interposed between the uptake or the release of each occluded Rb(+).  相似文献   

3.
This work presents a detailed kinetic study that shows the coupling between the E2→E1 transition and Rb(+) deocclusion stimulated by Na(+) in pig-kidney purified Na,K-ATPase. Using rapid mixing techniques, we measured in parallel experiments the decrease in concentration of occluded Rb(+) and the increase in eosin fluorescence (the formation of E1) as a function of time. The E2→E1 transition and Rb(+) deocclusion are described by the sum of two exponential functions with equal amplitudes, whose rate coefficients decreased with increasing [Rb(+)]. The rate coefficient values of the E2→E1 transition were very similar to those of Rb(+)-deocclusion, indicating that both processes are simultaneous. Our results suggest that, when ATP is absent, the mechanism of Na(+)-stimulated Rb(+) deocclusion would require the release of at least one Rb(+) ion through the extracellular access prior to the E2→E1 transition. Using vanadate to stabilize E2, we measured occluded Rb(+) in equilibrium conditions. Results show that, while Mg(2+) decreases the affinity for Rb(+), addition of vanadate offsets this effect, increasing the affinity for Rb(+). In transient experiments, we investigated the exchange of Rb(+) between the E2-vanadate complex and the medium. Results show that, in the absence of ATP, vanadate prevents the E2→E1 transition caused by Na(+) without significantly affecting the rate of Rb(+) deocclusion. On the other hand, we found the first evidence of a very low rate of Rb(+) occlusion in the enzyme-vanadate complex, suggesting that this complex would require a change to an open conformation in order to bind and occlude Rb(+).  相似文献   

4.
We used the direct route of occlusion to study the equilibrium between free and occluded Rb(+) in the Na(+)/K(+)-ATPase, in media with different concentrations of ATP, Mg(2+), or Na(+). An empirical equation, with the restrictions imposed by the stoichiometry of ligand binding was fitted to the data. This allowed us to identify which states of the enzyme were present in each condition and to work out the schemes and equations that describe the equilibria between the ATPase, Rb(+), and ATP, Mg(2+), or Na(+). These equations were fitted to the corresponding experimental data to find out the values of the equilibrium constants of the reactions connecting the different enzyme states. The three ligands decreased the apparent affinity for Rb(+) occlusion without affecting the occlusion capacity. With [ATP] tending to infinity, enzyme species with one or two occluded Rb(+) seem to be present and full occlusion seems to occur in enzymes saturated with the nucleotide. In contrast, when either [Mg(2+)] or [Na(+)] tended to infinity no occlusion was detectable. Both Mg(2+) and Na(+) are displaced by Rb(+) through a process that seems to need the binding and occlusion of two Rb(+), which suggests that in these conditions Rb(+) occlusion regains the stoichiometry of the physiological operation of the Na(+) pump.  相似文献   

5.
In the Albers-Post model, occlusion of K(+) in the E(2) conformer of the enzyme (E) is an obligatory step of Na(+)/K(+)-ATPase reaction. If this were so the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) should be equal to the rate constant for deocclusion. We tested this prediction in a partially purified Na(+)/K(+)-ATPase from pig kidney by means of rapid filtration to measure the occlusion using the K(+) congener Rb(+). Assuming that always two Rb(+) are occluded per enzyme, the steady-state levels of occluded forms and the kinetics of deocclusion were adequately described by the Albers-Post model over a very wide range of [ATP] and [Rb(+)]. The same happened with the kinetics of ATP hydrolysis. However, the value of the parameters that gave best fit differed from those for occlusion in such a way that the ratio (Na(+)/K(+)-ATPase activity)/(concentration of occluded species) became much larger than the rate constant for deocclusion when [Rb(+)] <10 mM. This points to the presence of an extra ATP hydrolysis that is not Na(+)-ATPase activity and that does not involve occlusion. A possible way of explaining this is to posit that the binding of a single Rb(+) increases ATP hydrolysis without occlusion.  相似文献   

6.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

7.
The effect of pH and of ATP on the Na : K selectivity of the (Na+ + K+)-ATPase has been tested under equilibrium conditions. The Na+ : K+-induced change in intrinsic tryptophan fluorescence and in fluorescence of eosin maleimide bound to the system has been used as a tool. 1 mol of eosin maleimide per mol of enzyme gives no loss in either ATPase or phosphatase activity and the fluorescence in the presence of Na+ is about 30% higher than in the presence of K+. Choline, protonated Tris, protonated histidine and Mg2+ have an 'Na+' effect on the extrinsic fluorescence, while Rb+, Cs+ and NH4+ have a 'K+' effect. Choline and protonated Tris have an Na+ effect on intrinsic fluorescence. A close correlation between the effect of Na+ compared to K+ on the fluorescence change and on Na+ activation of hydrolysis indicates that the observed changes in fluorescence are due to an effect of Na+ and of K+ on the internal sites of the system. The equilibrium between the two conformations, which are reflected by the difference in fluorescence with Na+ and K+, respectively, is highly influenced by the concentration of protons. At a given Na+ : K+ ratio, an increase in the proton concentration shifts the equilibrium towards the 'K+' fluorescence form while a decrease shifts the equilibrium towards the 'Na+' fluorescence form, i.e., protons increase the apparent affinity for K+ and vice versa, K+ increases pK values of importance for the Na+ : K+ selectivity. Conversely, a decrease in protons increases the apparent affinity for Na+ and vice versa, Na+ decreases the pK. ATP decreases the apparent pK for the protonation-deprotonation, i.e., ATP facilitates the deprotonation which accompanies Na+ binding. The results suggest two effects of ATP for the hydrolysis in the presence of Na+ and K+ : (i) at low ATP concentrations (K0.5 < 10 microM) on the K+-Na+ exchange on the internal sites and (ii) at higher, substrate, concentrations on the activation by K+ on the external sites.  相似文献   

8.
Occlusion of K (+) in the Na (+)/K (+)-ATPase can be achieved under two conditions: during hydrolysis of ATP, in media with Na (+) and Mg (2+), after the K (+)-stimulated dephosphorylation of E2P (physiological route) or spontaneously, after binding of K (+) to the enzyme (direct route). We investigated the sidedness of spontaneous occlusion and deocclusion of Rb (+) in an unsided, purified preparation of Na (+)/K (+)-ATPase. Our studies were based on two propositions: (i) in the absence of ATP, deocclusion of K (+) and its congeners is a sequential process where two ions are released according to a single file mechanism, both in the absence and in the presence of Mg (2+) plus inorganic orthophosphate (Pi), and (ii) in the presence of Mg (2+) plus Pi, exchange of K (+) would take place through sites exposed to the extracellular surface of the membrane. The experiments included a double incubation sequence where one of the two Rb (+) ions was labeled as (86)Rb (+). We found that, when the enzyme is in the E2 conformation, the first Rb (+) that entered the enzyme in media without Mg (2+) and Pi was the last to leave after addition of Mg (2+) plus Pi, and vice-versa. This indicates that spontaneous exchange of Rb (+) between E2(Rb 2) and the medium takes place when the transport sites are exposed to the extracellular surface of the membrane. Our results open the question if occlusion and deocclusion via the direct route participates in any significant degree in the transport of K (+) during the ATPase activity.  相似文献   

9.
We used partially purified Na+/K+-ATPase from pig kidney to study dephosphorylation, occlusion, and ATPase activity in the same enzyme preparation and in media of identical composition containing 10 microM ATP and different concentrations of Rb+, used as a K+ congener. The experiments were performed using a rapid-mixing apparatus with a time resolution of 3.5 ms. The main findings were as follows. (i) At sufficiently low Rb+ concentration the initial rate of dephosphorylation was higher than that of occlusion, (ii) as [Rb+] tended to zero the slope of the time course of occlusion but not that of the time course of dephosphorylation approached zero and, (iii) as Rb+ concentration increased, ATPase activity first increased and, after passing through a maximum, tended to a value that was lower than that observed in media without Rb+. None of these results is compatible with the currently held idea that binding of a single Rb+ to the E2P conformer of the ATPase does not modify the rate of dephosphorylation and strongly suggest that a single Rb+ does promote dephosphorylation through a mechanism that is not stoichiometrically coupled to Rb+ occlusion. If this mechanism is included in the currently accepted scheme for ATP hydrolysis by the Na+/K+-ATPase, a reasonable prediction of the experimental results is obtained.  相似文献   

10.
Specific labeling is required for energy transfer measurements and to avoid artifacts in the use of fluorophores as reporter groups. Therefore, a method for specific modification by one of the most popular reagents for P-type ATPases (fluorescein 5'-isothiocyanate) has been developed. Sulfhydryl reagents protected against modification of cysteine residues, and treatment with dithiothreitol eliminated a slow doubling of the fluorescence of conventionally modified Na,K-ATPase upon dilution that is attributed to disappearance of self-energy transfer. Removal of nonspecifically bound fluorescein was also confirmed by titration of the modified Na, K-ATPase with anti-fluorescein antibody and by time resolution of the fluorescence change when the modified enzyme was mixed with Na(+) in a stopped-flow instrument. The only fluorescence change when specifically modified Na,K-ATPase was mixed with Na(+) was the signal from fluorescein at the antibody-inaccessible, substrate-protectable site that reports the conformational change in unphosphorylated enzyme. The magnitude of the fluorescence change reporting the conformational change increased from between 8 and 12% to between 25 and 30% without affecting the kinetic constants estimated from titrations with Na(+) and K(+). The method should be generally applicable to the preparation of specifically labeled P-type pumps for use in kinetic and equilibrium titrations or energy transfer measurements.  相似文献   

11.
This paper demonstrates and characterizes inactivation by N,N'-dicyclohexylcarbodiimide (DCCD) of Rb+ and Na+ occlusion in pig kidney (Na+,K+)-ATPase. Rb+ and Na+ occlusion dependent on oligomycin are measured with a manual assay. Parallel measurement of phosphorylation (by Pi plus ouabain) and Na+ or Rb+ occlusion lead to stoichiometries of 3 Na+ or 2 Rb+ per pump molecule. Inactivation of cation occlusion by DCCD shows the following features: (a) Rb+ and Na+ occlusion are inactivated with identical rates and (b) DCCD concentration dependence shows first-order kinetics and also proportionality to the ratio of DCCD to protein, (c) Rb+ and Na+ occlusion are equally protected from DCCD, by Rb+ ions with high affinity (or Na+ ions with lower affinity), (d) inactivation is only slightly pH-dependent between 6 and 8.5 but (e) is significantly accelerated by several hydrophobic amines while a water-soluble nucleophile, glycine ethyl ester has no effect, and (f) inactivation is exactly correlated with inactivation of (Na+,K+)-ATPase activity of ATP-dependent Na+/K+ exchange in reconstituted vesicles and with the magnitude of E1Na+----E2(Rb+) conformational transitions measured with fluorescence probes. The simplest hypothesis to explain the results is that DCCD modifies one (or a small number of) critical carboxyl residues in a non-aqueous cation binding domain and so blocks occlusion of 2 Rb+ or 3 Na+ ions. The results suggest further that Na+ and K+(Rb+) bind to the same sites and are transported sequentially on the same trans-membrane segments. A second effect of the DCCD treatment is a 4-8-fold shift of the conformational equilibrium E2(Rb+)----E1Rb+ toward E1Rb+. This is detected by (a) reduction in apparent Rb+ affinity for Rb+ occlusion or Rb+/Rb+ exchange in vesicles and (b) direct demonstration of an increased rate of E2(K+)----E1Na+ and decreased rate of E1Na+----E2(K+). This effect is not protected against by Rb+ ions and probably reflects modification of a second group of residues. Modification of (Na+,K+)-ATPase by carbodiimides is complex. Depending on the nature of the carbodiimide (water- or lipid-soluble), ratio of carbodiimide to protein, and perhaps source of the enzyme, inactivation might result either from modification of critical carboxyls, as suggested by this work, or from internal cross-linking as proposed by Pedemonte, C. H. and Kaplan, J. H. ((1986) J. Biol. Chem. 261, 3632-3639).  相似文献   

12.
Lanthanides are useful probes in Ca2+ binding proteins, including sarcoplasmic reticulum (Ca2+,Mg2+)-ATPase. Here, we report that lanthanides compete with Rb+ and Na+ for occlusion in renal (Na+,K+)-ATPase. The lanthanides appear to bind at a single site and act as competitive antagonists, without themselves becoming occluded. All lanthanides tested are effective with the order of potencies Pr greater than Nd greater than La greater than Eu greater than Tb greater than Ho greater than Er, but differences are small. The presence of Mg2+ ions does not affect competition of La3+ with Na+ or K+ suggesting that the effects are not exerted via divalent metal sites. Lanthanides compete with Rb+ and Na+ in membranes digested with trypsin so as to produce 19-kDa and smaller fragments of the alpha-chain (Karlish, S.J.D., Goldshleger, R., and Stein, W. D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4566-4570), also suggestive of a direct interaction of lanthanides with Na+ and K+ sites. Effects of lanthanides on conformational changes of fluorescein-labeled (Na+,K+)-ATPase are Na(+)-like. They stabilize the E1 state and compete with K+ ions. The Ki for La3+ is 0.445 microM. The apparent affinity in fluorescence assays is proportional to enzyme concentration (Ki = 32.4*[protein] + 0.445 microM La3+), suggesting that lanthanides are also bound nonspecifically (possibly to phospholipids). Direct assays confirm that Tb3+ binding is nonspecific. Measurements of the rate of various conformational transitions show that the rate of E2(K+)----E1(X) (X = Na+ or La3+) is significantly inhibited by La3+ compared to Na+. La3+ ions also slightly accelerate the rate of the E1----E2(K+) conformational transition. The dissociation rate of La3+ has been measured by monitoring the rate of E1(La3+)----E2(K+). It is 1.741 s-1 at 25 degrees C. Based on this value, it is unlikely that La3+ ions are stably occluded, consistent with the conclusion from occlusion experiments. In the future, lanthanides bound to monovalent cation sites with high affinity may become useful probes for location and characterization of sites, although it will be necessary to take into account the large amount of nonspecific binding.  相似文献   

13.
The absorbance spectra, fluorescence emission and excitation spectra, and fluorescence anisotropy of the potential-sensitive styryl dye RH421 have been investigated in aqueous solution and bound to the lipid membrane. The potential-sensitive response of the dye has been studied using a preparation of membrane fragments containing a high density of Na+, K(+)-ATPase molecules. In aqueous solution the dye is sensitive both to changes in pH and ionic strength. Evidence has been found that the dye readily aggregates in aqueous solution. Aggregation is enhanced by an increase in ionic strength. The aggregates formed display a low fluorescence intensity. At high pH values (above approx. 8) changes in the dye's fluorescence spectra are observed, which may be due to a reaction of the dye with hydroxide ions. When bound to the membrane the dye also exhibits concentration-dependent fluorescence changes. The potential-sensitive response of the dye in Na(+),K(+)-ATPase membrane fragments after addition of MgATP in the presence of Na+ ions cannot be explained by a purely electrochromic mechanism. The results are consistent with either a potential-dependent equilibrium between membrane-bound dye monomers and membrane-bound dimers, similar to that previously proposed for the dye merocyanine 540, or with a field-induced structural change of the membrane.  相似文献   

14.
We propose a reaction model for the palytoxin-sodium-potassium (PTX-Na(+)/K(+)) pump complex. The model, which is similar to the Albers-Post model for Na(+)/K(+)-ATPase, is used to elucidate the effect of PTX on Na(+)/K(+)-ATPase during the enzyme interactions with Na(+) and/or K(+) ions. Conformational substates and reactions for the pump are incorporated into the Albers-Post model to represent enzymes with or without bound PTX. A mathematical model based on the reaction scheme is used in simulations modeling experimental studies of PTX-induced ionic currents. Our simulations suggest that (i) extracellular Na(+) as well as K(+) promotes PTX-induced channel blockage; (ii) extracellular K(+) accelerates PTX unbinding; and (iii) K(+) occlusion in the PTX-pump complex is essential for describing the PTX-induced current dynamics.  相似文献   

15.
A Abbott  W J Ball 《Biochemistry》1992,31(45):11236-11243
Monoclonal antibody M7-PB-E9 binds the sheep kidney Na+,K(+)-ATPase alpha-subunit with high affinity (Kd = 3 nM) and inhibits enzyme turnover in competition with ATP, and, like ATP, in the presence of Mg2+, it stimulates the rate of ouabain binding [Ball, W. J. (1984) Biochemistry 23, 2275-2281]. In this study, covalent attachment of fluorescein 5'-isothiocyanate (FITC) at (or near) the enzyme's ATP binding site did not alter the antibody's affinity for alpha nor did bound antibody alter the anisotropy of (r = 0.36) or the solvent accessibility of iodide to bound FITC. Further, in its E1Na+ conformation (4 mM NaCl), the enzyme's affinity for the ATP congener eosin was unaltered by the bound antibody (Kd = 9 nM). In contrast, partial E2 conformations induced by KCl lowered eosin affinities (0.2 mM KCl, Kd = 28 nM; 0.4 mM, Kd = 86 nM), and M7-PB-E9 reduced these affinities further (Kd = 66 and 130 nM, respectively). By monitoring the fluorescence changes of the FITC-labeled enzyme, the antibody was found to assist several ligand-induced conformational transitions from E1 (E1Na+ or E1Tris) to E2 (E2K+, E2-P(i)Mg2+, or E2Mg2+.ouabain) states, and inhibit the E2K(+)-->E1Na+ transition. Antibody binding alone, however, did not appear to significantly alter enzyme conformation. The antibody therefore is not directed against the ATP site but binds to a region of alpha distinct from any ligand binding site and which plays an important role in the E1<-->E2 transitions.  相似文献   

16.
The ntpJ gene, a cistron located at the tail end of the vacuolar-type Na(+)-ATPase (ntp) operon of Enterococcus hirae, encodes a transporter of the KtrII K(+) uptake system. We found that K(+) accumulation in the ntpJ-disrupted mutant JEM2 was markedly enhanced by addition of valinomycin at pH 10. Studies of the membrane potential (DeltaPsi; inside negative) by 3, 3'-dihexyloxacarbocyanine iodide fluorescence revealed that the DeltaPsi was hyperpolarized at pH 10 in JEM2; the DeltaPsi values of the parent strain ATCC 9790 and JEM2, estimated by determining the equilibrium distribution of K(+) or Rb(+) in the presence of valinomycin, were -118 and -160 mV, respectively. DeltaPsi generation at pH 10 was accomplished by an electrogenic Na(+) efflux via the Na(+)-ATPase, whose levels in the two strains were quite similar. Na(+) uptake driven by an artificially imposed DeltaPsi (inside negative) was missing in JEM2, suggesting that NtpJ mediates Na(+) movement in addition to K(+) movement. Finally, the growth of JEM2 arrested in K(+)-limited high-Na(+) medium at pH 10 was restored by addition of valinomycin. These results suggest that NtpJ mediates electrogenic transport of K(+) as well as Na(+), that it likely mediates K(+) and Na(+) cotransport, and that Na(+) movement via NtpJ is the major Na(+) reentry pathway at high pH values.  相似文献   

17.
Eosin has been used as a fluorescent probe for studying conformational states in (K+ + H+)-ATPase. The eosin fluorescence level is increased by Mg2+ (K0.5 = 0.2 mM). This increase is counteracted by K+ (I0.5 = 1.3 mM) and choline (I0.5 = 17.2 mM) and by ATP. Binding studies with eosin indicate that the increase and decrease in fluorescence is due to changes in binding of eosin to the enzyme. The Mg2+-induced specific binding has a Kd of 0.7 microM and a maximal capacity of 3.5 nmol per mg enzyme, which is equivalent to 2.5 site per phosphorylation site. These experiments and the fact that eosin competitively inhibits (K+ + H+)-ATPase towards ATP, suggest that eosin binds to ATP binding sites.  相似文献   

18.
This paper describes properties of a simple manual assay for Rb+ occlusion on renal (Na+ + K+)-ATPase. Rb+ occlusion is measured by applying the enzyme plus Rb+ (86Rb) mixture to a Dowex-50 cation exchange column at 0 degree C, and eluting the enzyme with occluded Rb+ using an ice-cold sucrose solution. The enzyme-Rb+ complex is quite stable at 0 degree C. This method is useful for measuring Rb+ occlusion under equilibrium binding conditions and slow rates of dissociation of the enzyme-Rb+ complex. The stoichiometry of Rb+ occluded per phosphorylation site is 2. Rb+ saturation curves are strictly hyperbolic, suggesting that the two Rb+ sites have very different affinities, one in the micromolar range and one in the tens of millimolar range. ATP shifts the Rb+ saturation curves to the right (control K0.5 100-200 microM; plus ATP, K0.5 0.8-1.4 mM, in a 100 mM Tris-HCl medium, pH 7.0) and reduces the maximal level occluded (control approx. 4 nmol/mg; plus ATP approx. 3 nmol/mg protein). Thus, as expected, ATP shifts the E(1)2Rb+-E2(2Rb+)occ equilibrium towards E1. Sodium ions at concentrations of up to 30 mM compete with the rubidium ions, KNa = 1.86 mM in the Tris-HCl medium. Na+ at higher concentrations (30-100 mM) has an added non-competitive antagonistic effect. At room temperature, Rb+ dissociates slowly from the enzyme, kobs = 0.08 s-1, in the presence of either Rb+ (20 mM) or Na, (100 mM). As expected, dissociation is greatly accelerated by ATP, the rate being to fast to be measured by this technique. (Na+ + K+)-ATPase proteolyzed selectively by chymotrypsin in a Na+ medium, occludes Rb+. For control and proteolyzed (Na+ + K+)-ATPase the Rb+ saturation curves are similar and the rates of dissociation of the enzyme-Rb+ complex are identical. The chymotryptic split appears to disrupt antagonistic interactions between cation and ATP binding domains, while the E1-E2 conformational transition of the unphosphorylated protein probably remains.  相似文献   

19.
Time-resolved laser-induced fluorescence depolarization measurements of internal motions in lysozyme are presented. The fluorescent dye eosin binds in a one-to-one complex with the enzyme, and is used both to measure the overall tumbling time constants and to probe the motions of residues in the region of binding. The precision and accuracy of the present method for determining the overall tumbling time constants compare favorably with those from other methods used in the literature. The extent of the internal motions, as described by a model independent order parameter, S2, is temperature dependent, and changes when the inhibitor N,N',N"-triacetylchitotriose, (GlcNAc)3, is bound to the active site of the enzyme. The observed temperature dependence and changes in S2 upon binding of (GlcNAc)3 are interpreted in terms of a nonharmonic model of the effective potential that is consistent with the picture of concerted motions in the protein. The values of the parameters of the potential that reproduce the data with and without the bound inhibitor imply that (GlcNAc)3 binding causes an increase in the rigidity of the protein, which agree qualitatively with other results on the lysozyme-(GlcNAc)3 system.  相似文献   

20.
The rate of the transition from the E2 form to the E1 form of (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) has been monitored by the fluorescence changes of eosin. The equilibrium between E1 and E2 is poised towards E2 in the absence of added cations. A stopped-flow tracing of the transition from E2 in the presence of 2 microM K+ (contamination) to E1 (in 150 mM Na+) is multiexponential with a large, rapidly decaying component (t 1/2 about 50 ms) and a smaller component which has a t 1/2 of about 2 s. KCl in microM concentrations decreases the amplitude of the rapidly decaying component and increases the amplitude of the slow component. The stopped-flow tracings can be satisfactorily fitted by a sum of three exponentials. An apparent Kd for K+ of about 5 microM is obtained for the conversion of the rapidly decaying component to the slowly decaying component. The experiments show that the E2 form is a mixture of at least two enzyme conformations. One E2 conformation - without K+ bound, (E2) - is transferred rapidly to the E1 conformation when Na+ is added, whereas the other E2-conformation--with K+ bound with an apparent high affinity, Kocc E2--is transferred slowly to the E1 conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号