首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study [D'Andrea et al., 1985] reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2,450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.  相似文献   

2.
Various techniques exerting mechanical stress on cells have been developed to investigate cellular responses to externally controlled stimuli. Fundamental mechanotransduction processes about how applied physical forces are converted into biochemical signals have often been examined by transmitting such forces through cells and probing its pathway at cellular levels. In fact, many cellular biomechanics studies have been performed by trapping (or immobilizing) individual cells, either attached to solid substrates or suspended in liquid media. In that context, we demonstrated two‐dimensional acoustic trapping, where a lipid droplet of 125 µm in diameter was directed transversely toward the focus (or the trap center) similar to that of optical tweezers. Under the influence of restoring forces created by a 30 MHz focused ultrasound beam, the trapped droplet behaved as if tethered to the focus by a linear spring. In order to apply this method to cellular manipulation in the Mie regime (cell diameter > wavelength), the availability of sound beams with its beamwidth approaching cell size is crucial. This can only be achieved at a frequency higher than 100 MHz. We define ultrasound beams in the frequency range from 100 MHz to a few GHz as ultrasound microbeams because the lateral beamwidth at the focus would be in the micron range. Hence a zinc oxide (ZnO) transducer that was designed and fabricated to transmit a 200 MHz focused sound beam was employed to immobilize a 10 µm human leukemia cell (K‐562) within the trap. The cell was laterally displaced with respect to the trap center by mechanically translating the transducer over the focal plane. Both lateral displacement and position trajectory of the trapped cell were probed in a two‐dimensional space, indicating that the retracting motion of these cells was similar to that of the lipid droplets at 30 MHz. The potential of this tool for studying cellular adhesion between white blood cells and endothelial cells was discussed, suggesting its capability as a single cell manipulator. Biotechnol. Bioeng. 2011; 108:1643–1650. © 2011 Wiley Periodicals, Inc.  相似文献   

3.
Biological effects on endothelium induced by contrast ultrasound (US) may be relevant for transferring drugs into the tissue. An in vitro tissue-mimicking phantom was developed to simulate clinical precordial echocardiography of three modalities (two-dimensional (2DE), pulsed wave (PW), and Power Doppler echocardiography) with gradual increases of acoustic output (mechanical index (MI) 0.0-1.6 and thermal index soft tissue (TIS) 0.0-1.3, respectively; transmit-frequency 1.8 MHz in second harmonic mode (SHI) by 2DE, 1.8 MHz for PW-Doppler, and 3.2 MHz for Power Doppler) as well as contrast agent (CA) concentrations (0.002-4 mg/mL Levovist). Disintegration of the endothelial monolayer was quantitatively analyzed by counting intercellular gaps in light microscopy. No gaps were observed in CA application without sonication. Only few gaps appeared at sonication without CA application in 2DE at MI=1.6 and in PW- and Power Doppler at TIS > or =0.4 and MI > or =0.4. The number of gaps increased significantly with the gradual increase of US output and to a comparably lesser but also significant extent with CA concentrations. Diagnostic contrast echocardiography may induce endothelial disintegrations dependent on US output as well as on CA concentrations. This aspect might be helpful in further in vivo series on local drug delivery.  相似文献   

4.
The three‐dimensional distribution of the specific absorption rate of energy (SAR) in phantom models was analysed to detect clusters of mobile phones producing similar spatial deposition of energy in the head. The clusters' characteristics were described from the phones external features, frequency band and communication protocol. Compliance measurements with phones in cheek and tilt positions, and on the left and right side of a physical phantom were used. Phones used the Personal Digital Cellular (PDC), Code division multiple access One (CdmaOne), Global System for Mobile Communications (GSM) and Nordic Mobile Telephony (NMT) communication systems, in the 800, 900, 1500 and 1800 MHz bands. Each phone's measurements were summarised by the half‐ellipsoid in which the SAR values were above half the maximum value. Cluster analysis used the Partitioning Around Medoids algorithm. The dissimilarity measure was based on the overlap of the ellipsoids, and the Manhattan distance was used for robustness analysis. Within the 800 MHz frequency band, and in part within the 900 MHz and the 1800 MHz frequency bands, weak clustering was obtained for the handset shape (bar phone, flip with top and flip with central antennas), but only in specific positions (tilt or cheek). On measurements of 120 phones, the three‐dimensional distribution of SAR in phantom models did not appear to be related to particular external phone characteristics or measurement characteristics, which could be used for refining the assessment of exposure to radiofrequency energy within the brain in epidemiological studies such as the Interphone. Bioelectromagnetics. Bioelectromagnetics 32:634–643, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
A recent study raised concern about increase of resting blood pressure after a 35 min exposure to the radiofrequency (RF) field emitted by a 900 MHz cellular phone. In this randomized, double blind, placebo controlled crossover trial, 32 healthy subjects were submitted to 900 MHz (2 W), 1800 MHz (1 W) cellular phone exposure, and to sham exposure in separate sessions. Arterial blood pressure (arm cuff method) and heart rate were measured during and after the 35 min RF and sham exposure sessions. We evaluated cardiovascular responses in terms of blood pressure and heart rate during controlled breathing, spontaneous breathing, head-up tilt table test, Valsalva manoeuvre and deep breathing test. Arterial blood pressure and heart rate did not change significantly during or after the 35 min RF exposures at 900 MHz or 1800 MHz, compared to sham exposure. The results of this study indicate that exposure to a cellular phone, using 900 MHz or 1800 MHz with maximal allowed antenna powers, does not acutely change arterial blood pressure and heart rate.  相似文献   

6.
The spatial distributions of induced 27 or 2450 MHz radiofrequency (RF) electric fields (E-fields) and specific absorption rates (SARs) in a three-component spherical cell model (cytoplasm, membrane, extracellular space) were determined by Mie scattering theory. The results were compared to results for the same cell model but with 0.5 nm thick of bound water on the inner (cytoplasmic) and outer (extracellular) membrane surfaces (i.e., five-component cell model). The results provide insight regarding direct frequency-dependent RF radiation effects at the cellular level. Induced E-fields and SARs were calculated for two bound-water characteristic frequencies (400 or 1000 MHz) and ionic conductivities (1–1000 mS/m). In order to estimate the dependence of the results on bound water within the membrane per se, the model was revised to include bound water within the inner and outer membrane surfaces. The results were as follows: (1) On the x-axis, the y- and z-components of the induced E-field were of insignificant magnitude compared to the x-component for an incident E-field parallel to the x-axis; (2) the ratio of transmembrane E-fields induced by 2450 MHz vs. 27 MHz RF [i.e., Ex (2450 MHz)/Ex (27 MHz)] was 0.1; (3) for the three-component cell model, the corresponding SAR ratios [SAR (2450 MHz)/SAR (27 MHz)] in the cytoplasm and extracellular space were 1.66 and 5.0, respectively; (4) the SAR ratios [SAR (2450 MHz)/SAR (27 MHz)] for the cytoplasm and extracellular space for the five-component cell model were 1.66 and 5.0, respectively; (5) the ratio of the E-fields induced in the cytoplasmic and extracellular layers of bound water in the five-component cell model [E (2450 MHz)/E (27 MHz)] were 0.62 and 0.63, respectively; (6) the SAR ratios [SAR (2450 MHz)/SAR (27 MHz)] for the cytoplasmic and extracellular bound-water layers were 66 and 65.3, respectively; and (7) variation of bound-water characteristic frequency, ionic conductivity, or bound-water incorporation inside the membrane surfaces, per se, did not significantly affect the E-field or SAR ratios. These results indicate that frequency-dependent nonuniformities may occur in the distribution of induced RF E-fields and SARs at the cellular level. © 1995 Wiley-Liss, Inc.  相似文献   

7.
The effect of the frequency of an ultrasonic linear transvaginal probe on the collection of bovine oocytes by transvaginal ultrasound-guided follicle aspiration was investigated. Probes with different frequencies (7.5 or 5.0 MHz) were applied to examine the clarity of follicles on the monitor using ovaries of slaughtered cows in Experiment 1. The follicles were visualized on the monitor and divided into small (3- to 5-mm diameter) and large (6- to 10-mm) groups. They were also divided into 2 groups according to the clarity of their outline (clear or obscure). The number of small follicles visualized with a clear outline was greater (P < 0.01) with the 7.5 MHz probe than with the 5.0 MHz probe (9.0 vs 3.2). Oocyte aspiration from live cows was performed using the 7.5 or 5.0 MHz probe in Experiments 2 and 3. The recovered oocytes were divided into 3 categories: cumulus-oocyte-complexes (COCs), denuded oocytes and all others. In Experiment 2, the number of oocytes collected per donor cow was assessed, and in Experiment 3 the number of oocytes per aspirated follicle was examined by aspirating a constant number of follicles per aspiration session. The numbers of oocytes and COCs per donor cow obtained with the 7.5 MHz probe (11.2 and 9.0, respectively) were greater (P < 0.01) than those obtained with the 5.0 MHz probe (4.3 and 3.5). This difference between probes was due to the greater clarity of the follicle images obtained with the 7.5 MHz probe.  相似文献   

8.
The aim of this study was to evaluate and compare the influence of 864 MHz and 935 MHz radiofrequency/microwave (RF/MW) fields on the growth, colony-forming ability, and viability of V79 cells (continuous line). Cell samples with 1 x 10(4) V79 cells each, were exposed to continuous wave frequencies of 864 MHz and 935 MHz for 1, 2 and 3 hours. Exposed samples were matched with unexposed control samples. Specific absorption rate (SAR) was 0.08 W/kg for the 864 MHz or 0.12 W/kg for the 935 MHz field. Cell growth and viability were determined by counting cells every day for five days after exposure. Colony-forming ability was assessed by counting colonies seven days after exposure. The growth of the 864 MHz-irradiated cells was significant after two- and three-hour exposure 72 hours after irradiation (p < 0.05). The similar was observed 72 hours after exposure for cells exposed to 935 MHz microwaves for three hours (p <0.05). Colony-forming ability and cell viability in V79 cells exposed to 864 MHz or 935 MHz microwaves did not significantly differ from control cells. The two applied RF/MW fields showed similar effects on the growth, colony-forming ability and viability of V79 cells. Cell growth impact was time-dependent for both fields.  相似文献   

9.
In vitro experiments were performed to determine whether 2450 MHz microwave radiation induces alkali-labile DNA damage and/or DNA-protein or DNA-DNA crosslinks in C3H 10T(1/2) cells. After a 2-h exposure to either 2450 MHz continuous-wave (CW) microwaves at an SAR of 1.9 W/kg or 1 mM cisplatinum (CDDP, a positive control for DNA crosslinks), C3H 10T(1/2) cells were irradiated with 4 Gy of gamma rays ((137)Cs). Immediately after gamma irradiation, the single-cell gel electrophoresis assay was performed to detect DNA damage. For each exposure condition, one set of samples was treated with proteinase K (1 mg/ml) to remove any possible DNA-protein crosslinks. To measure DNA-protein crosslinks independent of DNA-DNA crosslinks, we quantified the proteins that were recovered with DNA after microwave exposure, using CDDP and gamma irradiation, positive controls for DNA-protein crosslinks. Ionizing radiation (4 Gy) induced significant DNA damage. However, no DNA damage could be detected after exposure to 2450 MHz CW microwaves alone. The crosslinking agent CDDP significantly reduced both the comet length and the normalized comet moment in C3H 10T(1/2) cells irradiated with 4 Gy gamma rays. In contrast, 2450 MHz microwaves did not impede the DNA migration induced by gamma rays. When control cells were treated with proteinase K, both parameters increased in the absence of any DNA damage. However, no additional effect of proteinase K was seen in samples exposed to 2450 MHz microwaves or in samples treated with the combination of microwaves and radiation. On the other hand, proteinase K treatment was ineffective in restoring any migration of the DNA in cells pretreated with CDDP and irradiated with gamma rays. When DNA-protein crosslinks were specifically measured, we found no evidence for the induction of DNA-protein crosslinks or changes in amount of the protein associated with DNA by 2450 MHz CW microwave exposure. Thus 2-h exposures to 1.9 W/ kg of 2450 MHz CW microwaves did not induce measurable alkali-labile DNA damage or DNA-DNA or DNA-protein crosslinks.  相似文献   

10.
These experiments were designed to investigate the effects of sub-resonant microwave (MW) exposure (350 MHz, E orientation, average power density 38 mW/cm2, average whole-body specific absorption rate 13.2 W/kg) on selected physiological parameters. The increase in peripheral body temperature during 350 MHz exposure was greater than that in earlier experiments performed at 700 MHz (resonance). Heart rate and mean arterial blood pressure were significantly elevated during a 1 °C increase in colonic temperature due to 350 MHz exposure; respiratory rate showed no significant change. The results are consistent with other investigators' reports comparing sub-resonance exposures with those at resonance and above. Bioelectromagnetics 18:335–338, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The main aim of the present study was to estimate the gestational age of Egyptian goats by B-mode ultrasound measurement of embryonic or fetal parts throughout pregnancy. Trans-rectal (TR) ultrasonography (7 MHz) was carried out on 15 pregnant Egyptian does at Day 10 post mating on alternate days until Day 25 and then once at 3-5-day intervals until Day 50. Trans-abdominal (TA) ultrasonography (3.5-5 MHz) was carried out on the same animals from Days 25 to 130 at 3-5-day intervals. After imaging the embryo or the fetus, the following parameters were measured: length of the embryo or fetus (CRL), heart rate (FHR), biparital diameter (BPD), trunk diameter (TD), placentome size (PS), umbilical cord diameter (UCD) and femur length (FL). The average of days at which the embryonic vesicle was first determined by TR and TA ultrasonography was 16.98+/-1.97 and 27.87+/-3.48, respectively. The embryo proper with a beating heart was first determined by TR and TA ultrasonography at an average of 22.36+/-2.66 and 30.36+/-4.75 days, respectively. All the fetal measures were significantly (P<0.0001) correlated with the gestational age. With the exception of fetal heart rate (R(2)=0.551), all the measured fetal structures were highly correlated (R(2)> or =90) with the gestational age. In conclusion, the age of embryo or fetus in Egyptian does can be estimated by ultrasound measuring the crown rump length, biparital diameter, trunk diameter, placentome size, umbilical cord diameter and femur length.  相似文献   

12.
Fourier transform 13C NMR spectra of E. coli tRNA enriched on 13C in either position 2 of adenine (60 atom % 13C) or in position 2 of uracil (82%) and cytosine (63%) were taken at 25.16 MHz over the temperature range 10 degrees - 76 degrees. For C2 of adenine the peak as initially 5 ppm wide, but narrowed to 0.5 ppm as the molecule unfolded. C2 of uracil displayed behavior similar to that of adenine while the cytosine peak, initially relatively narrow at low temperature, sharpened less dramatically. Comparison of spectra at 26.16 MHz and 67.9 MHz showed that the peak widths for folded tRNA were determined largely by chemical shift non-equivalence. T2 T2 measurements suggested that intrinsic line widths of most cytosine C2 peaks were 4 Hz and 2-3 Hz for uracil. Adenine C2 with a directly bonded proton had resonances of about 40 Hz line width. T1 values were measured for C2 of adenine and the ribose carbons of tRNA. Consideration of dipolar relaxation and chemical shift anisotrophy led to a calculated rotational correlation time of 1.6 +/- 0.4 x 10(-8) sec for the adenines and 1.3 +/- 0.3 x 10(-8) sec for the ribose carbons.  相似文献   

13.
This study was performed to evaluate the pre-exposure effects of ultrasound (1 MHz or 3 MHz) on ConA activated spleenocyte proliferation and cytokine production. Cells were treated for 10 min at various intensities, rested for 1h and stimulated with the T cell activator ConA. The cells were then analyzed for the effects of non-thermal ultrasound on cell growth and the presence of IL-2, IL-4 and IFN-g. The data show that pre-exposure of spleenocytes had no significant effects on the proliferation of ConA activated spleenocytes at either 1 or 3 MHz (10 min at 0.1 or 0.5 W/cm(2)). Significant increases in IL-2 were observed in both 1 and 3 MHz pre-treated and ConA activated spleenocytes. Cells pre-treated with 1 MHz and stimulated with ConA showed a significant increase in IL-4 and IFN-g. Conversely, cells pre-treated with 3 MHz and stimulated with ConA show a significant decrease in IL-4 and IFN-g. Interleuken-4 is known to increase the growth of mast cells, inhibit macrophage activation and increases the activity of the T cell subpopulation, T(H2). Interferon-gamma is known to stimulate production of collagen in fibroblasts, enhance debridement activity of macrophage and inhibit activity of the T cell subpopulation, T(H2).  相似文献   

14.
The growth of rat body mass was shown to abate during the prolonged (45 days, 7 or 14 hours a day) microwave irradiation of 10 to 60 microW/cm2 both of continuous (2375 MHz) and pulse (2750 or 546 MHz) generation.  相似文献   

15.
D-erythro-Pentos-2-ulose and D-threo-pentos-2-ulose and their 1-13C- and 2-13C-substituted derivatives have been prepared by oxidizing the corresponding natural and 13C-substituted D-aldopentoses (D-arabinose, D-xylose) with cupric acetate, and purifying the products by chromatography on a cation-exchange resin in the calcium or barium form. The equilibrium compositions of the pentos-2-uloses in 2H2O were determined by 13C-n.m.r. spectroscopy (75 MHz) at 25 degrees and 80 degrees. Among the eighteen possible monomeric acyclic, cyclic, and bicyclic forms, the anomeric pairs of the unhydrated aldopyranoses, aldopyranose endocyclic hydrates, aldofuranose endocyclic hydrates, and ketofuranose exocyclic hydrates were identified on the basis of 13C chemical shifts and 13C-1H and 13C-13C spin-coupling constants. 1H-N.m.r. (300, 500, and 620 MHz) and 13C-n.m.r. (75 MHz) spectroscopic data in one and two dimensions (DQF-COSY, homonuclear 2D-J) were used to evaluate the conformational properties of the cyclic structures. The unhydrated pyranoses are highly conformationally homogeneous; the erythro and threo isomers prefer 1C4 and 4C1 conformations, respectively. D-threo-Pentos-2-ulopyranose hydrate prefers the 4C1 conformation whereas the erythro isomers exists in both the 4C1 and 1C4 conformations. The furanoid forms favor structures having quasi-axial anomeric hydroxyl groups and quasi-equatorial exocyclic hydroxymethyl or dihydroxymethyl groups.  相似文献   

16.
The influence of radio frequency (RF) fields of 180, 900, and 1800 MHz on the membrane potential, action potential, L-type Ca(2+) current and potassium currents of isolated ventricular myocytes was tested. The study is based on 90 guinea-pig myocytes and 20 rat myocytes. The fields were applied in rectangular waveguides (1800 MHz at 80, 480, 600, 720, or 880 mW/kg and 900 MHz, 250 mW/kg) or in a TEM-cell (180 MHz, 80 mW/kg and 900 MHz, 15 mW/kg). Fields of 1800 and 900 MHz were pulsed according to the GSM-standard of cellular phones. The specific absorption rates were determined from computer simulations of the electromagnetic fields inside the exposure devices by considering the structure of the physiological test arrangement. The electrical membrane parameters were measured by whole cell patch-clamp. None of the tested electrophysiological parameters was changed significantly by exposure to RF fields. Another physical stimulus, lowering the temperature from 36 degrees C to 24 degrees C, decreased the current amplitude almost 50% and shifted the voltage dependence of the steady state activation parameter d(infinity) and inactivation parameter f(infinity) of L-type Ca(2+) current by about 5 mV. However, at this lower temperature RF effects (900 MHz, 250 mW/kg; 1800 MHz, 480 mW/kg) on L-type Ca(2+) current were also not detected.  相似文献   

17.
A surface integral equation (SIE) method is used to calculate the specific absorption rate (SAR) in spherically capped cylindrical models irradiated by an axially incident electromagnetic plane wave (K polarization) in a frequency range for which calculations previously have not been available (80–400 MHz for man models). In the SIE method, the electromagnetic (EM) field relations are formulated in terms of electric and magnetic currents on the surface of the model. The average SAR is calculated from the far scattered EM fields by means of the forward scattering theorem. SAR data calculated by the SIE method agree with data calculated by the extended boundary condition method (EBCM) for frequencies up to 80 MHz (the upper frequency limit of the EBCM) for man models. For rat models exposed to 1–3 GHz radiation, reasonable agreement was also obtained with the limited experimental data available.  相似文献   

18.
The minute-range up and down rhythms of the lateral leaflets of Desmodium gyrans has been studied when exposed to electromagnetic radiation in the radio-frequency (RF) range. The RF radiation was applied as homogeneous 27.12 MHz fields in specially-designed exposure cells(and in some cases as non-homogeneous radiation of 27 MHz. amplitude modulated by 50 Hz, in front of commercial diathermy equipment). All fields were applied as pulses. We report effects in the leaflet rhythms such as temporary changes in the amplitude, period, and phase. The radiation could also cause temporary or complete cessations of the rhythms. The lowest dose (8 W/cm2) used was still effective. © 1993 Wiley-Liss. Inc.  相似文献   

19.
The nuclear magnetic resonance (NMR) parameters, spin-lattice (T1), and spin-spin (T2) relaxation time, are usually longer for neoplastic cells than for normal cells of the same cell type. This has generally been true at low NMR frequencies (less than or equal to 100 MHz) when comparisons have been made between normal and neoplastic cells that have both spent a short time in culture. We have previously demonstrated that although the T1 values of paired normal and neoplastic Syrian hamster (SH) fibroblastic cells in culture are not significantly different when measured at 300 MHz, the 300 MHz T2 values for the neoplastic cells are smaller than those of the normal cells. (Xin et al. (1986), Cell Biophysics 8, 213.) Since treatment of normal diploid cells with polypeptide growth factors or tumor promoters frequently results in reversible expression of neoplasia-associated phenotypes, T1 and T2 were obtained at 300 MHz for treated and untreated SH cells to see if these compounds could also produce smaller 300 MHz T2 values. Secondary culture SH fetal fibroblast cells were treated with epidermal growth factor (EGF), fibroblast growth factor (FGF), phorbol-12,13-didecanoate (PDD) and 4-alpha-phorbol-12,13-didecanoate (4 alpha PDD). Treatment with either growth factor resulted in smaller T2 values, but a statistically significant decrease was not observed for PDD or 4 alpha PDD. The observed reductions in T2 values were correlated with the morphological and growth-stimulatory effects of these compounds on the cells.  相似文献   

20.
P G Schmidt  T Playl  P F Agris 《Biochemistry》1983,22(6):1408-1415
Carbon-13 enrichment of the C1' position of the ribose moiety in Escherichia coli tRNA has made possible the detailed study of motion in this molecule. Enrichment was accomplished in vivo with a strain, M1R, selected for growth and degree of incorporation of ribose in a stringently defined minimal medium. Purine biosynthesis de novo was blocked with 6-mercaptopurine. Exogenously provided [1-13C]ribose and nucleobases were utilized via the salvage pathway and were required for growth of culture. Carbon-13-enriched transfer RNA in solution at 30 degrees C exhibited a prominent, broad, asymmetric NMR signal at 91.5 ppm for the C1' carbon. Upon heat denaturation of the tRNA, three C1' signals were resolved and could be attributed to the base-specific nucleotides in tRNA: uridine and guanosine at 88.7 ppm; adenosine at 89.5 ppm; and cytidine at 90.6 ppm. Ribose C3' and C5' were partially enriched due to scrambling of ribose carbons in vivo. The minimum net isotopic enrichment of C1' was 33%. Values for the relaxation time T1 and the nuclear Overhauser enhancement (NOE) at 75.5, 67.8, and 25.2 MHz (13C), the NOE at 50.3 MHz, T2 at 75.5 MHz, and line widths over the range of 20-75.5 MHz were analyzed in light of several models for internal motion in macromolecules. The data were inconsistent with physically unreasonable constructs involving free internal diffusion of the C1'-H vector about the glycosidic bond. Internal diffusion (wobble) within a cone or jumps between states were models that did fit the data. For diffusion within a cone, the cone half-angle was 15-20 degrees, with a correlation time of about 2 X 10(-9) s for internal reorientation. With the two-state jump model, the half-angle for jumps about the glycosidic bond was 14 +/- 2 degrees with a lifetime of 2 X 10(-9) s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号