首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The proton release by a species that can hyperaccumulate nickel (Alyssum murale) and by a non-accumulator (Raphanus sativus L.) was studied at different pH and heavy metal concentrations in solution culture. Both factors influenced the growth and composition of the plants.A. murale was more sensitive than radish to a decrease of pH from 7.0 to 6.0 in the growth medium; plant yield and proton production diminished with decreasing pH. However, yields and proton production of radish only decreased at pH 5.5. The differences in the amounts of protons produced between the hyperaccumulator species and radish were not large enough to conclude that decreasing pH in the rhizosphere ofA. murale is a mechanism for heavy metal solubilization.Nickel concentrations inA. murale followed the typical pattern of an accumulator plant — more Ni was accumulated in the shoots than in the roots. Lower concentrations of Zn and Cd occurred in the shoots than in roots ofA. murale, and also of Ni in radish. The concentrations of Co inA. murale shoots were increased when Zn, Ni and Cd were absent from the nutrient solution. However, Co concentrations in radish shoots were independent of the concentrations of other heavy metals in the growth medium.  相似文献   

2.
Aims:  To evaluate the potential of Actinoplanes campanulatus , Micromonospora chalcea and Streptomyces spiralis endophytic in cucumber roots, to promote plant growth and to protect seedlings and mature plants of cucumber from diseases caused by Pythium aphanidermatum , under greenhouse conditions.
Methods and Results:  Three endophytic isolates, out of 29, were selected through tests aimed at understanding their mechanisms of action as biocontrol agents and plant growth promoters. When applied individually or in combination, they significantly promoted plant growth and reduced damping-off and crown and root rot of cucumber. The combination of the three isolates resulted in significantly better suppression of diseases and plant growth promotion, than where the plants were exposed to individual strains.
Conclusions:  The three selected actinomycete isolates colonized cucumber roots endophytically for 8 weeks, promoted plant growth and suppressed pathogenic activities of P. aphanidermatum on seedling and mature cucumber plants.
Significance and Impact of the Study:  The results clearly show that the endophytic, glucanase-producing actinomycetes used, especially as a combined treatment, could replace metalaxyl, which is the currently recommended fungicide for Pythium diseases in the United Arab Emirates. These endophytic isolates also have the potential to perform as plant growth promoters, which is a useful attribute for crop production in nutrient impoverished soils.  相似文献   

3.
Summary Differences have been shown in molybdenum uptake by microorganisms from the rhizosphere and soil sampled away from the roots, of the radish,Raphanus sativus L., grown in market garden soils from Napier and Hastings (New Zealand).The organisms from the rhizosphere of plants in Hastings soil concentrated up to 55 ppm of molybdenum dry weight when grown in a liquid medium made from Hastings soil extract and supplemented with carbon, phosphorus, nitrogen, sulphur and molybdenum. The growth from an inoculum of pooled fungal isolates from the rhizosphere has been shown to contain a higher concentration of molybdenum than growth from pooled bacterial or streptomycete isolates. The growth from a combined bacterial and streptomycete inoculum contained a higher concentration of molybdenum than the growth from either group alone.Organisms from the rhizosphere and soil sampled away from the roots of radishes grown in Napier soil did not contain such high concentrations of molybdenum.No significant differences in the frequency of morphological types were found in the isolates from either soil.  相似文献   

4.
Soil microorganisms are capable of producing auxins in the presence of the physiological precursor, L-tryptophan (L-TRP). This study was designed to assess the influence of L-TRP on radish (Raphanus sativus) yield when applied to soil. The amount of L-TRP added to soil to give optimum radish growth in glasshouse studies was 3.0 mg kg-1 soil which enhanced the root yield by 1.31-fold over the control. The root/shoot ratio was increased by 1.10-fold upon this amendment. One L-TRP application was sufficient to promote growth. The best time to apply L-TRP was at the onset of seedling emergence. The application of L-TRP promoted radish yield comparable to those plants treated with indole-3-acetic acid, indole-3-acetamide and indole-3-lactic acid. Foliar application of L-TRP had no effect on the root and shoot dry weight. A field study was conducted in which L-TRP applications at a rate of 20.4 and 204 mg m-2 significantly enhanced the radish yield in fertilized plots receiving fertilization. The shoot dry weight was increased by 1.29-fold and the root dry weight by 1.15-fold over the control in response to 20.4 mg L-TRP m-2. These findings indicate that L-TRP, applied at the appropriate times and concentrations, can increase radish yield. The effect of L-TRP on radish growth could be attributed to i) substrate-dependent auxin production in soil by the indigenous microflora, ii) uptake directly by plant roots followed by metabolism within their tissues, and/or iii) a change in the balance of rhizosphere microflora affecting plant growth.  相似文献   

5.
Changes in pH and redox potential were studied in the rhizosphere soil of a nickel hyperaccumulator plant (Alyssum murale) and of a crop plant, radish (Raphanus sativus). Differences in rhizosphere pH and reducing activity were found between the lateral and the main roots of both species, but the pH changes in the rhizosphere were similar in both species. Changes in pH were associated with the relative uptakes of cations and anions; whether the concentrations of heavy metals in the growth medium did not have any effect on the rhizosphere pH. The source of nitrogen (ammonium or nitrate) was the major factor determining the pH of the rhizosphere of both species. The redox potential of the rhizosphere was influenced by both the N-source and the concentrations of heavy metals. When heavy metals were not present in the growth medium, and nitrate was the N-source, the reducing capacity of A. murale roots was enhanced. However, the reducing activity of A. murale was always smaller than that of radish. Therefore, the mechanism of metal solubilization by the hyperaccumulator plant does not involve either the reduction of pH in the rhizosphere or the release of reductants from roots. The acidification and reducing activity of the roots of A. murale was always smaller than that of R. sativus.  相似文献   

6.
Actinomycetes were isolated from the upper 1 - 3 cm of the soil layer in a well-developed forest and in an adjacent clearcut area where Douglas-fir [Pseudotsuga menziesii (MIRB.) Franco] regeneration had been impaired for two decades. The population density in the clearcut area was two times as high as that in the forested area. The percentage of actinomycetes that inhibited seed germination of the test plants was significantly higher in isolates obtained from the clearcut area than in those obtained from the forested area, and isolates from the clearcut showed five times the phytotoxic effect of those from the forest. Some actinomycete isolates, 4 % from the clearcut and 2.6 % from the forest, significantly reduced in vitro growth of two common ectomycorrhizal fungi of Douglas-fir,Laccaria laccata andHebeloma ovstuliniforme. Two actinomycete isolates from the clearcut reduced fungal growth by 40 % and 73 %. Reduction of the nutrient in the growth medium did not affect the antifungal activity of the actinomycetes. The data support the idea that, along with other factors, phytotoxic and antifungal actinomycetes may suppress natural regeneration or establishment of planted seedlings - either directly or. indirectly - through inhibition of seed germination or of mycorrhizal fungi.  相似文献   

7.
Two phases of radish ontogenesis (I-when the plant had produced 3 –5 nodes and II-when the plant had produced 8 –10 nodes) were established on the basis of axillary, meristem localization. Flowering of the plants in response to GA treatment depends on the phases in which they were treated and on growth correlations in the apical meristem. The results obtained suggest that the reaction ofRaphanus sativus (LDP) to GA treatment is parallel to that ofChenopodium rubrum (SDP), and that the response of radish plants also depends on changes in growth correlations in the shoot apical meristem at the time of treatment.  相似文献   

8.
Of seventy-five actinomycetes isolated from a bean rhizosphere in the United Arab Emirates, an isolate of Streptomyces griseoluteus (WT) was found to be capable of producing relatively high levels of putrescine on decarboxylase agar medium and to produce putrescine, spermidine and spermine in liquid decarboxylase medium. In the glasshouse, the application of the WT strain to soil amended with arginine (as a precursor for putrescine) significantly (P < 0.05) promoted the growth of bean plants and increased the fresh and dry weights and lengths of roots and shoots, compared with control plants. Infestation of soil with the WT strain resulted in a significant (P < 0.05) increase in the levels of putrescine, spermidine and spermine, certain endogenous plant growth regulators (PGRs) (indole-acetic acid, and gibberellic acid), chlorophylls (a, b) and carotenoids with a concomitant reduction in the level of abscisic acid in bean plants, compared with control plants. A polyamine non-producing mutant strain (PNPM) obtained from the wild-type isolate (WT), however, failed to promote plant growth. There were no significant (P > 0.05) differences between the levels of polyamines, endogenous PGRs, chlorophylls (a, b), and carotenoids between plants that were not exposed to either of the strain (control) and those grown in soil with the PNPM strain. Both WT and PNPM strains were incapable of producing in vitro detectable levels of PGRs, indole-acetic acid, indole-pyruvic acid, gibberellic acid, isopentenyl adenine and zeatin in the culture filtrates. This study is the first to demonstrate the potential of a polyamine-producing actinomycete to promote plant growth. In addition, it is also the first published report of the production of polyamines by streptomycete actinomycetes.  相似文献   

9.
The effect of adenine (ADE), isopentyl alcohol (IA) and a cytokinin-producing bacterium, Azotobacter chroococcum, on the morphological plant characteristics of Raphanus sativus (radish) was studied in sand under axenic-inoculated conditions and in soil under glasshouse and field conditions. The application of the combination of 0.2 mg kg–1 ADE, 13 mg kg–1 IA plus the inoculum enhanced the dry weight of root and shoot tissues, leaf area and chlorophyll a content, to a much greater degree than when in the presence of the cytokinin precursors (ADE or IA) or the bacterium alone. Enhanced plant growth observed under axenic conditions upon the addition of ADE and IA indicated that the plant has the ability to assimilate and utilize ADE and IA for growth and metabolism. While the addition of the inoculum without precursors was also stimulatory, greater enhancement of plant growth was observed following the application of ADE, IA and A. chroococcum together being attributed primarily to the increase in microbial production of cytokinins within the rhizosphere.  相似文献   

10.
By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against damping-off caused by P. ultimum.  相似文献   

11.
A basic 9-kD protein was purified from seeds of radish (Raphanus sativus L.). The 43 amino-terminal amino acids show extensive sequence identity with nonspecific lipid transfer proteins from other plant species. The radish seed nonspecific lipid transfer protein-like protein inhibits the growth of several fungi in vitro.  相似文献   

12.
萝卜对土生空团菌菌丝生长的影响   总被引:1,自引:0,他引:1  
纯培养条件下, 测定了十字花科植物萝卜(Raphanus sativus L.)种子、幼苗、根系分泌物及幼苗提取物对土生空团菌(Cenococcum geophilum Fr. (Cg))菌株CgSO1、CgSB2、CgO5、SPOP2 和Cg5#菌株生长的影响。结果表明供试Cg菌株与萝卜种子共培养, 或将萝卜根系分泌物和幼苗提取物加入到培养基中, 均促进了Cg菌丝生长。高温灭菌处理使萝卜根系分泌物和幼苗提取物对Cg菌株的促生作用更强, 而高温灭菌后的萝卜幼苗段对菌株生长影响不大。其中经高温灭菌处理的幼苗水提取物对5菌株的促生作用最大, CgSO1、CgSB2、CgO5、SPOP2和Cg5#每菌落的菌丝干重分别达到: 54.8、45.8、63.9、41.2和50.5 mg。  相似文献   

13.
Mycorrhizoplane-associated actinomycetes were isolated using an enrichment technique from red pine (Pinus resinosa Ait.) roots of seedlings recently outplanted onto cleared northern hardwood sites in the Upper Peninsula of Michigan, USA. Interactions were assessedin vitro between actinomycete isolates and three commonly occurring ectomycorrhizal fungi (Laccaria bicolor (Maire) Orton,L. laccata (Scop.: Fr.) Berk. and Br., andThelephora terrestris Fr.). Most actinomycete isolates exerted a range of effects on the growth of the three fungus isolates during the four week test period, inhibiting some while stimulating others; several inhibited growth of all three fungus isolates. Mycorrhizoplane-associated actinomycetes show potential for use as coinoculants with selected ectomycorrhizal fungi to optimize the soil microflora for developing seedlings.  相似文献   

14.
Plants of radish (Raphanus sativus L.) were grown under selectedlight conditions in controlled environmental chambers in orderto monitor the role of photoperiod, irradiance level and inputlight energy in plant development. Results indicated that thedaily input of light energy was the most important light factoraffecting leaf development while photoperiod and irradiancelevel had the major influences on storage organ development.Distribution of assimilates to leaves and storage organs variedunder different light regimes with long photoperiods and highirradiances producing the largest storage organs. Once initiated,the rate of storage organ growth was similar under all testedlight environments. Raphanus sativus L., radish, growth, development, light, photoperiod, assimilate distribution, storage organ  相似文献   

15.
Root-knot nematodes are serious pathogens that severe damage to major crops. They damage plant root system that caused significant yield losses. Moreover, the predisposition of nematode-infected plants is secondary infection from fungal plant pathogen that additional adverse effects on plant growth. Our target is to find the antagonist for control nematode, and secondary infection agents and stimulate plant growth. Twenty-three plant-parasitic nematode infested soils were taken from some provinces in the northern and center of Thailand and actinomycetes and fungi were isolated. Eighty-three isolates belong to actinomycete and 67 isolates were fungi. The predominant actinomycete taxa was Streptomyces (97.6%). The predominant fungal taxa were Penicillium (37.3%) and Fusarium (32.8%). All actinomycete and fungal isolates were subjected for primary screening in vitro for their effects on egg hatching and juvenile mortality of Meloidogyne incognita. Secondary screening was evaluated for antagonist effect on plant pathogenic fungi collected from nematode-infected plant, plant growth hormone (indole-3-acetic acid; IAA) and siderophore production. From primary screening, 7 actinomycete and 10 fungal isolates reduced egg hatching and kill juveniles of M. incognita after 7 days incubation. In secondary screening, 10 nematophagous microbes produced IAA and 9 isolates produced hydroxamate siderophore. Streptomyces sp. CMU-MH021 was selected as a potential biocontrol agent. It reduced egg hatching rate to 33.1% and increased juvenile mortality rate to 82% as contrasted to the control of 79.6 and 3.6%, respectively. This strain had high activity to against tested fungi and high ability on IAA (28.5 μg ml−1) and siderophore (26.0 μg ml−1) production.  相似文献   

16.
We have isolated two Superoxide dismutase cDNA clones (RsCu/ZnSod andRsFeSod) from small radish (Raphanus sativus L.) by cDNA library screening.RsCu/ZnSod is 563 bp long, with an open reading frame of 153 amino acids, and corresponds to a protein of predicted molecular mass 15.1 kDa and a pl of 5.44. The 823-bp RsFeSod has an ORF of 213 amino acids, corresponding to a protein of predicted molecular mass 25.4 kDa and a pl of 8.77. Their nucleotide and deduced amino acid sequences show the highest homology with those ofArabidopsis. Genomic Southern blot analysis, using each cDNA clone as probe, has revealed that the SOD genes are present as at least two copies in the small radish genome. Nondenaturing polyacrylamide gels for SOD activity has demonstrated the presence of several isozymes, depending on the organ type and developmental stage. TheseRsSod genes also have differential expression patterns in response to treatments with white light, xenobiotics, UV, osmoticums, plant hormones, and salicylic acid. Therefore, we suggest that they are involved in an antioxidative defense mechanism against stress induced by environmental change.  相似文献   

17.
Spatial autocorrelation was applied to microgeographic variations in Korean wild radish,Raphanus sativus var.hortensis Baker f.raphanstroides. Separate counts of each type of join (combination of genotypes at a single locus) for each allele, and for each distance class of separation, were tested for significant deviation from random expectations by calculating the Standard Normal Deviation. Moran’s / was significantly different from the expected value in 16 of 112 cases (14.3%). Eleven of these values (9.8%) were negative, indicating genetic dissimilarity among pairs of individuals in the eight distance classes. Populations of wild radish are small in Korea and are distributed with tractors used for fishing. Occasional cutting of seed-bearing stems as fodder for animals also may bring a high level of gene flow. Thus, disturbance by many anglers, as well as by farmers, may contribute to the fact that the wild radish population of Onsan is unusual in lacking spatial genetic structure.  相似文献   

18.
A chitinolytic actinomycete complex in chernozem soil has a specific taxonomic composition, which differs from that of the actinomycete complex typically isolated on standard nutrient media containing sugars and organic acids as carbon sources. The actinomycete complex that was isolated by using nutrient media with chitin as the source of carbon and nitrogen was dominated by representatives of the genus Streptosporangium, and the actinomycete complex that was isolated by using nutrient media with sugars and organic acids as the carbon sources was dominated by representatives of the genus Streptomyces. The confirmation of the ability of actinomycetes to utilize chitin as a sole source of carbon and nitrogen came from the augmented length and biomass of the mycelium, the increased number and biomass of the actinomycete spores, the production of carbon dioxide, and the accumulation of NH4 + ions in the culture liquid of the actinomycetes grown in the nutrient media with chitin.  相似文献   

19.
Coprolites (fossil feces) are important sources of evidence of ancient food webs and ecosystems. Actinomycetes are a fundamental component in the decay of organic matter, and serve as catalysts for nutrient cycles. Recently, gas vesicles filled with numerous verrucose colonies of substrate mycelium of an actinomycete were discovered inside a fossilized spiral amphipolar fish coprolite recovered from mid–Permian deposits of Brazil. These colonies are composed of masses of substrate hyphae, some of which are undergoing segmentation. Arising from the colonies are chains of spores separated by narrow, elongate connectives. The fossil actinomycete is described below as Palaeostromatus diairetus gen. et sp. nov. and represents the oldest known actinomycete associated with vertebrate deposits. Since the colonies occur only inside the coprolite, either Palaeostromatus diairetus gen. et sp. nov. was part of the gut flora or it was acquired from a food source. The only other remains in the coprolite are eighteen paleoniscoid fish scales, which suggests that the producer was a carnivorous/omnivorous fish. This is the oldest record of a direct interaction between vertebrates and actinomycetes.  相似文献   

20.
The rhizosphere, the narrow zone of soil around living roots, is characterized by root exudates which attract soil microorganisms. Most importantly, certain soil fungi establish symbiotic interactions with fine roots which enhance nutrient availability for the plant partner (mycorrhiza). The establishment of such a symbiosis can be affected by soil bacteria. In this study we isolated Gram-positive soil bacteria from the rhizosphere of a spruce stand rich with fly agaric (Amanita muscaria) fruiting bodies. Using a coculture technique in Petri dishes, bacterial isolates were characterized by their effect on the growth of fungal hyphae. A group of bacterial strains were identified which significantly promoted growth of fly agaric hyphae. One of these strains was shown to additionally inhibit growth of pathogenic fungi such as Armillaria obscura (wide host range) and Heterobasidion annosum (causes wood decay in conifers). Taxonomic characterization of the effective bacterial isolates by their morphological appearance, by the analysis of diaminopimelic acid, cell wall sugars, and DNA sequencing (16S rDNA) identified them as actinomycetes, some of which are not yet contained in data banks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号