首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 3 separate trials at 2 locations, dairy heifers (n = 396) were treated with a Controlled Internal Drug Release (CIDR) progesterone device for 9 d. On Day 7 of CIDR treatment, all heifers were injected with PGF(2alpha). Synchronized estruses were detected using a tailpaint and chalk (TPC) scoring system. An animal's tailhead was painted at device insertion, and this strip was covered with a contrasting color of chalk at device removal. Over all trials, 85.1% of the heifers were detected in estrus and were inseminated at 48 or 72 hours after CIDR removal. These synchronized and inseminated heifers were divided into the following treatment groups: 1) untreated controls, receiving no further treatment (n = 138); 2) post-insemination progesterone supplementation with a new (n = 59) or used (n = 29) CIDR device for Days 1 to 8 or 2 to 9, respectively, following insemination; or 3) resynchronization of return to service with a used CIDR device for Days 17 to 22 after insemination (n = 112). The pregnancy rate to first insemination in the control and resynchronized groups (Groups 1 and 3) was 46.4%, but decreased to 18.2% with the post-insemination progesterone supplementation. Resynchronization of returns to service (estrus detected 1 to 4 d following removal of second CIDR) occurred in 58.9% of all nonpregnant heifers in Group 3. In summary, CIDR devices used in conjunction with PGF(2alpha) effectively synchronize estrus in dairy heifers. Progesterone supplementation within 2 d of first insemination for 7 d suppressed fertility. Used CIDR devices inserted for Days 17 to 22 after first insemination resynchronized heifers not pregnant to first insemination.  相似文献   

2.
Two trials were conducted to evaluate the efficacy of short-term progestin administration to resynchronize the second estrus after artificial insemination in yearling beef heifers. In Trial 1 crossbred yearling heifers (n = 208) were synchronized with Syncro-Mate-B (SMB) and artificially inseminated (AI) between 48 and 54 h following implant removal. Implant removal is defined as Day 1. Following AI, the heifers were randomly assigned to 1 of 2 experimental groups. Group 1 heifers were fed melengestrol acetate (MGA) daily from Day 17 to 21 at a rate of 0.5 mg/head, while Group 2 control received no exogenous progestin during this period. Synchrony of estrus was defined as the 3-d period in which the highest number of heifers expressed behavioral estrus in each group. There was no difference (P < 0.05) in the pregnancy rate during the second estrus due to MGA supplementation. More MGA-treated heifers (P < 0.01) expressed estrus in a 3-d period than the controls. In Trial 2, yearling heifers (n = 108) were synchronized with 2 injections of PGF(2alpha) (second PGF(2alpha) injection is designated as Day 1) administered 14 d apart with AI 12 h after the onset of behavioral estrus. The heifers were then randomly assigned to 1 of the following 3 treatment groups after initial AI: 1) MGA fed at 0.5 mg/head daily from Days 17 to 21; 2) norgestomet administered in 6.0-mg implants from Days 17 to 21; 3) untreated control heifers. Blood samples were collected on Day 21 and analyzed for progesterone (P(4)). Elevated P(4) (> 1 ng/ml) on Day 21 indicated pregnancy to the first insemination. Synchrony among the 3 groups of heifers was similar (P > 0.10); however, the second estrus was less (P < 0.05) variable in the MGA and norgestomet treated heifers. During the resynchronized second estrus, conception rates were not affected by progestin treatment (MGA 40%, norgestomet 64%, and control 62%; P > 0.10). However, a proportion of heifers treated MGA 10% 4 36 and norgestomet 3% 1 36 expressed behavioral estrus during second estrus even though they were diagnosed as pregnant from first service by elevated P(4) levels on Day 21. We conclude that short-term use of progestin from Days 17 to 21 following AI causes closer synchrony of estrus; however, inseminating pregnant heifers that exhibit behavioral estrus may cause abortion.  相似文献   

3.
Control of estrus in dairy heifers with Syncro-Mate-B was evaluated in five experiments with a total of 393 Holstein heifers. Estradiol-17β at implant removal or gonadotropin releasing hormone 40 hr after implant removal did not cause any beneficial effect on fertility. In heifers implanted on selected days of the estrous cycle, 88.3% of heifers treated with SMB only were in estrus within 5 days of implant removal and fertility was not significantly different from that of control heifers. In heifers implanted at random stages of the estrous cycle, estrus occurred within 5 days of implant removal in 88.7% of 159 SMB treated heifers. First service conception rates (heifers pregnant of heifers inseminated) and pregnancy rates (heifers pregnant of heifers assigned) were 72.7% and 60.8% for heifers inseminated 8 to 16 hr after estrus within 5 days of implant removal, 55.0% and 55.0% for heifers inseminated 48 hr after implant removal without regard to estrus and 71.6% and 67.1% for control heifers inseminated over a 25 day period.  相似文献   

4.
This study was conducted to determine if early pregnancy-associated thrombocytopenia exists in cattle as has been demonstrated in mice and in humans. Three experiments were designed to compare peripheral platelet counts in pregnant versus nonpregnant animals. In Experiment 1 heifers (n = 25) were artificially inseminated 12 h after the onset of estrus. Peripheral platelet counts in 19 pregnant versus 6 nonpregnant heifers did not reveal any significant differences between groups after insemination. In Experiment 2 embryos were collected nonsurgically from superovulated cows (n =18) on Days 6 to 7 after estrus. Platelet counts were monitored every 12 h after the first insemination until 60 h after the second insemination. Platelet counts and the number of embryos collected nonsurgically from these superovulated donors did not show any significant correlations (P>0.05). Ten recipient heifers synchronized to donor animals received either an unfertilized ovum or a good quality embryo via nonsurgical transfer into the uterus. There were no significant reductions in platelet counts after transfer. In Experiment 3 platelet counts were monitored daily in four pregnant and five nonpregnant recipient heifers between Day 0 and Day 30 after embryo transfer on Day 8 of the cycle. The platelet counts did not reveal any significant differences between the pregnant and nonpregnant groups throughout Days 0 to 30. These results indicate that early pregnancy-associated thrombocytopenia cannot be demonstrated in cattle. Peripheral platelet counts cannot be used as an indicator of early pregnancy in cattle.  相似文献   

5.
Two groups of beef females receiving suboptimal energy diets were treated with Synchro-Mate B to control ovulation. The first group consisted of 30 suckled cows and 16 heifers. These females were bled 10 days and immediately prior to the implantation of norgestomet implants, at implant removal, 24, 27, 30, 33 and 36 hours and 9 and 16 days post-implant removal. The second group which consisted of 40 cows and 8 heifers was handled in the same manner except no blood samples were collected from 24 to 36 hours following implant removal. Calves were removed from all the cows for 48 hours, beginning at implant removal. All animals were artifically inseminated 48 hours following implant removal. Blood plasma was assayed for concentrations of progesterone and LH. The first service conception rate was 21% and 40% for groups 1 and 2. Several factors were identified that reduced the first service conception rate. In summary, Snychro-Mate B is an effective method to synchronize estrus in cattle. However, stress subsequent to implant removal should be avoided in order to obtain a higher first service conception rate.  相似文献   

6.
The objective of Experiment I, replicated twice, was to evaluate whether fertility of estrus-synchronized dairy heifers could be improved by postinsemination progesterone supplementation. Estrous cycles were synchronized using two injections of prostaglandin (PG) F(2alpha) adiministered 11 days apart. Heifers displaying estrus were inseminated and assigned to control (n = 155) and treated (n = 159) groups. Treatment consisted of intravaginal insertion of controlled internal drug release (CIDR) devices for Days 7 to 13 (Day 0 = day of estrus). The conception rate for CIDR-treated heifers (57.9%) did not differ significantly from that of the controls (53.6%). The return-to-estrus rate and pattern of return estruses were not affected by treatment, but indicated that early embryonic mortality may have occurred in some of the heifers diagnosed nonpregnant. The objective of Experiment II was to evaluate if used CIDR devices were effective in resynchronizing returns to estrus in previously synchronized inseminated but nonpregnant and noninseminated heifers. Estrous cycles of dairy heifers of breeding age were synchronized with PGF(2alpha). Heifers displaying estrus were assigned to be inseminated (n = 117) or not inseminated (n = 35). All heifers were treated with 9-day used CIDR devices for Days 17 to 22 after synchronized estrus in order to resynchronize returns to estrus. Of the inseminated but nonpregnant heifers (n = 41), 78.1% were detected in estrus after CIDR removal (versus 94.3% of noninseminated heifers [n = 35]; P < 0.05) and 61.0% of the estruses occurred within 4 days of CIDR removal (versus 91.4% of noninseminated; P < 0.05). Estruses of synchronized inseminated nonpregnant heifers occurred over a longer period compared with those of noninseminated heifers (P < 0.025). The results indicate that response to the resynchronization protocol was altered by the outcome (early embryo death or failed fertilization) of the previous unsuccessful insemination, and support the hypothesis that delayed returns to estrus can be attributable to a pregnancy which was initiated but failed to establish itself. Such factors should be considered when evaluating responses of cattle to treatments designed to enhance fertility.  相似文献   

7.
Two trials involving 85 heifers and 67 cows were conducted to determine the effect of estrous cycle stage at the time of Syncro-Mate-B((R)) (SMB) treatment on interval to estrus following implant removal and on conception rate at the synchronized estrus. In Trial 1, 57 beef and 28 dairy heifers were treated with SMB on each representative day of a 22-d estrous cycle (estrus = Day 0). Beef heifers were artificially inseminated approximately 48 h after implant removal, whereas dairy heifers were inseminated 0 to 12 h after detection of estrus. Inseminations were scored by the inseminator according to their difficulty. Interval to the onset of estrus was not different between heifers treated early ( Day 11) in the cycle (35.2 +/- 7.2 h). Conception rate at the synchronized estrus was slightly higher in early-cycle heifers (22 47 = 47% ) compared to late-cycle heifers (14 38 = 37% , P = 0.2). Heifers that were difficult to inseminate had lower (P < 0.01) conception rates (2 11 = 18% ) at the synchronized estrus than heifers considered normal (21 51 = 41% ) or easier than normal to inseminate (13 23 = 57% ). In Trial 2, of the 131 beef cows synchronized, 67 that were estimated to be either early or late in the estrous cycle by progesterone analysis were utilized. Cows were treated with SMB and inseminated without regard to estrus 48-h after implant removal. Inseminations were scored as in Trial 1. Calves were separated from cows from the time of implant removal to insemination. Conception rate was higher (P < 0.05) in cows treated with SMB early ( Day 11, 16 35 = 46% ). Cows that were difficult to inseminate had a lower (P < 0.01) conception rate (0 8 = 0% ) than cows that were normal (43 94 = 46% ) or easier than normal to inseminate (13 29 = 45% ).  相似文献   

8.
In a 5-year study (1973-1977), 281 cycling beef heifers were treated with a 7-day norgestomet (SC21009) ear implant and an intramuscular injection of prostaglandin F(2alpha) (PGF(2alpha)) at the time of implant removal or 24 hr before implant removal. Percentages of heifers in estrus by 36, 48, 60, 72, and 120 hr after implant removal were 32.4, 52.7, 71.6, 80.1, and 93.2, respectively. Onset of estrus occurred an average of 49.8 +/- 4.7 hr after treatment. Percentages of heifers in estrus 36 hr after treatment were 5.7 and 51.7 for those with a corpus luteum and those without a corpus luteum (or determined regressing by palpation) at implant removal, respectively. When PGF(2alpha) was injected 24 hr before implant removal, 55% of the heifers were in estrus by 36 hr after implant removal compared to 30% when PGF(2alpha) was injected at the time of implant removal; however, by 60 hr after implant removal the difference was 76% vs. 71%. First-service conception rates for synchronized and nonsynchronized heifers were 62.2% and 59.6%, respectively. During 1976 and 1977 heifers were checked for estrus every 4 hr and inseminated 2, 6, 10, 14, 18, 22, 26, or 30 hr after first detected to be in standing estrus. Conception rate was not significantly affected by time of insemination but tended to be higher for heifers bred 26 and 30 hr after first being detected in standing estrus (78.9% and 70.0% vs. average 59.2%). Treatment with a 7-day norgestomet implant plus a single injection of PGF(2alpha) 24 hr before or at implant removal appears to be a practical technique for synchronizing estrus in cycling heifers without affecting conception.  相似文献   

9.
Three experiments were conducted to examine the progestogen plus PMSG treatment for its effectiveness in inducing synchronous puberty in prepuberal zebu heifers in three different seasons. In Experiment 1, ten Ongole heifers (age 21 months) were treated with Norgestomet implants for nine days and an intramuscular injection of 400 IU of PMSG two days before implant removal. Ten heifers (age 25 months) were kept as untreated controls. Animals were inseminated 12 h after detection of cyclic estrus (not bred at induced estrus) until all animals conceived. The proportion of treated animals showing estrous, ovulatory, and cyclic activity were 100%, 75% and 25% respectively, while the average age at first conception was significantly less (P < 0.05) than in the control group. In Experiment 2, 18 Ongole heifers (age 22 months) were divided into treatment and control groups. Fixed-time inseminations were done 48 and 72 h after implant removal and 12 h after being detected in heat at other times. Estrus was seen in all while 63% became pregnant (P < 0.05). At the end of the 100-day experiment, the percent pregnant were 33 and 63 in the control and treatment groups, respectively. In the third study, twenty-six Ongole heifers (age 22 months) were assigned to treatment and control groups. Eighty-eight percent of the animals exhibited estrus, 75% ovulated (P < 0.01) and 25% conceived to fixed-time insemination. The pregnancy rate at the end of the experiment was 10 and 56% (P < 0.01) respectively in control and treated groups. Estrous response and fertility were better in the cooler month (February) and the treatment imposed in the hotter month (May) resulted in a significantly higher (P < 0.05) age and body weight at conception.  相似文献   

10.
This experiment was designed to test whether spermatozoa encapsulated in an alginate poly-L-lysine matrix had an extended fertile life in vivo after insemination. Estrus was synchronized in 417 primiparous Friesian and Jersey heifers with a system based on a CIDR-B intravaginal device before the heifers were inseminated either during proestrus (24 h after device removal) or at estrus (48 h after device removal). Pregnancy rates to first inseminations did not differ between the 24 and 48 h inseminations (61 vs 60.6%) with liquid semen diluted in Caprogen (control) but differed with encapsulated semen (45.1 vs 68.6%). The difference in pregnancy rates between the 2 types of semen was more pronounced (P < 0.08) in the animals that were visually detected in estrus. The mean survival time of spermatozoa in the female reproductive tract following insemination at the 24-h insemination time was estimated to be 50 +/- 7.5 h. The increased pregnancy rate with insemination of encapsulated spermatozoa at 48 h could have been due to this process predisposing spermatozoa to capacitate soon after insemination.  相似文献   

11.
Singh U  Khurana NK  Inderjeet 《Theriogenology》1998,50(8):1191-1199
Zebu cattle are notorious for poor fertility characterized by late maturity and long intercalving intervals attributed to a variety of factors, including genetic, nutritional and climatic. The aim of the present investigation, therefore, was to induce fertile estrus in acyclic pubertal heifers and postpartum anestrous Zebu cows by hormonal intervention. Pubertal Hariana and Sahiwal anestrous heifers (n=51) and postpartum cows (n=55) were either assigned a placebo (controls, N=6 for each breed and parity) or treated with 10-d norgestomet (3 mg) subcutaneous ear implants, with an initial injection of 3 mg, im norgestomet + 5 mg estradiol valerate, followed by 500 IU eCG at implant withdrawal (NOR-treated groups). Jugular venous plasma samples were obtained from a total of 28 animals (controls : 4 heifers and 4 cows; NOR-treated : 12 heifers and 8 cows) on Days 0 (implant insertion), 3, 7, 9 and Day 10 (implant withdrawal), every 12 h on Days 11 and 12, and then once daily on Days 17, 24 and 31. All the samples were assayed for progesterone. Almost all (97%) heifers and 81% cows were induced to estrus, the majority (92% heifers and 79% cows) within 120 h of implant removal. Synchrony of the induced estrus was better in cows, but interval to estrus and estrus duration were significantly longer in heifers (P<0.05). Post-treatment fertility, based on Day 28 nonretum rate, first service, and overall conception rates, was better in heifers (78.9, 60.5 and 73.7%, respectively) than cows (77.1, 48.6 and 62.9%, respectively), but the differences were significant only for the overall pregnancy rate (71.8% for heifers and 51.2% for cows; P<0.05). Low pre-treatment plasma progesterone values (<0.5ng/mL) were consistent with ovarian inactivity, confirming the true anestrus status of experimental animals. Controls failed to exhibit estrus and maintained low progesterone concentrations throughout the study. In treated animals, high progesterone values from Day 17 onwards suggested ovulatory estrus. These early luteal phase progesterone concentrations in nonpregnant (P=0.06) and nonpregnant, nonretum (P<0.05) animals were low in comparison with those of pregnant animals. Good fertility resulting from breeding according to estrus, inspite of variable intervals to estrus and estrus duration, advocates its advantage over fixed-time insemination in norgestomet-treated anestrous Zebu cattle.  相似文献   

12.
Helmer SD  Britt JH 《Theriogenology》1986,26(5):683-695
Two experiments were conducted to determine if progesterone secretion and fertility would be affected by administration of human chorionic gonadotropin (hCG) before or after the first insemination. In Experiment 1, 48 Holstein heifers received 1000 IU of hCG or 1 ml of saline on Days 2, 3, and 4 of an estrous cycle. They were inseminated at the subsequent estrus. In Experiment 2, 110 Jersey and 105 Holstein cows received a single injection of 5000 IU of hCG or 5 ml of saline on Day 3 after estrus. These cows were first inseminated either at the estrus immediately preceding treatment or at the subsequent estrus. In both experiments, blood samples for determination of progesterone were collected thrice weekly for 3 to 4 wk following treatment. In Experiment 1, progesterone concentrations during mid-cycle were higher in hCG-treated heifers than in saline-treated controls. Treatment with hCG resulted in an 11% increase in the first service conception rate (P < 0.48). In Experiment 2, hCG-treated cows displayed higher progesterone secretion during mid-cycle than saline-treated herdmates. The conception rate of cows inseminated prior to hCG-treatment was not affected by treatment, but cows inseminated after treatment had a marginally lower fertility rate. The conception rate of cows receiving a repeat insemination following hCG treatment was higher than for the controls. We conclude that treatment with hCG did not improve the conception rate at the first insemination, but it may be beneficial for cows that require a repeat service.  相似文献   

13.
One hundred and sixty-four beef heifers representing Angus, Brahman and their crosses were subjected to estrus synchronization treatment following evaluation of weight, body condition score and reproductive tract. Heifers were assigned to 1 of 2 methods of estrus detection, either visual observation for signs of standing estrus or a rump-mounted pressure-sensitive detection device. All heifers were artificially inseminated during a 25d insemination period and then bred by a bull. The effectiveness of estrus detection and timely insemination were evaluated by the type of detection method, breed and breeding event resulting in a pregnancy. Although there was not a significant difference in first service conception for method of detection, at the end of a 25-d insemination period, 60.5% of the visually observed heifers were pregnant, while only 45.8% of the heifers detected by the mount detection device were pregnant (P = 0.05). The reduced 25-d conception rate in the pressure-sensitive detection group suggested that insemination of detected heifers may not have been optimal for pregnancy. The mean time to estrus after implant removal and the time of insemination were evaluated. Heifers pregnant at the first service had a shorter time to estrus (32.11 +/- 1.6 h, P=0.13), a longer mean interval from the start of estrus to insemination (12.10 +/- 1.2 h, P = 0.16) and a positive mean interval between the end of standing estrus and the time of insemination (3.17 +/-1.7 h, P=0.19) than heifers not conceiving at the synchronized estrus (38.5 +/- 2.1, 7.42 +/- 1.9 h and -2.04 +/- 2.1 h, respectively). Breed differences were observed in estrus durations (Angus 8.52 +/- 1.2 h, Brahman 6.65 +/- 1.2 h, crossbred 11.90 +/- 1.2 h; P = 0.03), number of mounts (19 +/- 3.6, 25 +/- 5.4, 37 +/- 5.5, respectively; P=0.02) and gestation length (281 +/- 1.2, 291 +/- 1.8, 286 +/- 1.1 d, respectively; P = 0.001).  相似文献   

14.
Spitzer JC 《Theriogenology》1982,17(4):373-381
A study was conducted to evaluate the effectiveness of treatment with Syncro-Mate-B (SMB) and gonadotropin releasing-hormone (GnRH) on inducing a fertile estrus and/or ovulation in peripuberal beef heifers. Two hundred and twenty-three, 13 to 15 month peripuberal beef heifers, primarily of Angus or Simmental breeding, were alternately allotted by weight and age within breed to a non-treated control group (C) and three groups which received the SMB treatment regime. Treated groups differed in that one group was inseminated approximately 12 hr after detected in estrus (T) while two other groups were inseminated at a fixed time after implant removal (T-G-I42, T-I48). Heifers in group T-G-I42 received 125 mug GnRH at 30 hr, and were inseminated 42 hr after implant removal. The remaining group of SMB-treated heifers received no additional hormone therapy but were inseminated 48 hr after implant removal (T-I48). Age had no significant effect on estrous response or pregnancy rate nor were there significant age by weight interactions on these parameters. Weight was a significant source of variation on interval from start of breeding to pregnancy (P<.01) and the effect on interval to estrus approached statistical significance (P<.0.9). In control heifers, increased weight had a positive effect on estrous response during the first 21 days of breeding (P<.05). Conversely, weight had no effect on estrous response during the 5-day synchronized period in heifers treated with SMB and observed for estrus (group T). Cumulative estrous response in control heifers was 10, 47, 48 and 55% in 5, 21, 27 and 45 days of breeding, respectively. Cumulative estrous response in SMB-treated heifers obsrved for estrus (group T) was 88, 91, 91 and 91% in 5, 21, 27 and 45 days of breeding, respectively. Pregnancy rate after 5 days of breeding was 9, 27, 18 and 30% for heifers in groups C, T, T-G-I42 and T-I48, respectively. Pregnancy rate after 21 days of breeding for heirfers in groups C, T, T-G-I42 and T-I48, respectively, was 33, 38, 21 and 41%; after 27 days of breeding was 36, 43, 40 and 48%; after 45 days of breeding was 48, 61, 51 and 69% and after the total 88-day breeding season was 59, 68, 71 and 72%. While a large percentage of peripuberal beef heifers with adequate age but insufficient weight were induced into estrus with the SMB treatment, pregnancy rates were low. Timed insemination programs with or without GnRH do not appear to be effective in improving pregnancy response in non-cyclic beef heifers.  相似文献   

15.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

16.
Following detection of estrus in a one-injection prostaglandin F(2)alpha (PGF(2)alpha) synchronization regimen, 261 dairy heifers were randomly inseminated (A.I.) either once between 0800 and 0900 h daily (a.m.) or about 12 h after detection of estrus (a.m./p.m.). During the regimen, 31.8 and 33.3% for the a.m./p.m. and a.m. groups, respectively showed estrus and received A.I. during the pre-PGF(2)alpha period. The remaining heifers were injected with PGF(2)alpha with 95.6% from a.m./p.m. and 96.5% from a.m. showing estrus and receiving A.I. within five days after PGF(2)alpha. Pregnancy rates of 62.9% for a.m./p.m. and 62.0% for a.m. did not differ. Progesterone at the time of injection was similar between groups and was not correlated with either response to PGF(2)alpha or fertility. Percentages of heifers in estrus <24, 25-48, 49-72, 73-96 and >96 after PGF(2)alpha were 4.7, 30.2, 45.6, 14.3 and 5.3, respectively, with a mean time of 61.0+/-1.9 h. Satisfactory conception rate was attained with a.m. insemination.  相似文献   

17.
Two experiments were conducted to determine the conception rates of heifers time-inseminated following melengestrol acetate/prostaglandin F(2alpha) (MGA/PG) estrous synchronization treatment. In Experiment 1, timed insemination of heifers at 72 h after the PG injection, without regard for behavioral estrus, tended to improve (P < 0.15) the percentage of heifers pregnant to artificial insemination (AI) compared with that of synchronized heifers bred 12 h after they were first detected in estrus. In the timed-insemination treatment, heifers exhibiting behavioral estrus 48 to 72 h after PG tended to have an increased (P < 0.15) conception rate to AI compared with heifers exhibiting estrus within 48 h of PG administration. In Experiment 2, the number of heifers conceiving to AI following the MGA/PG estrous synchronization regimen was increased by mass insemination of all heifers not exhibiting estrus by 72 h after PG. The pregnancy rate to AI was higher in heifers with serum progesterone (P(4)) concentrations higher than 1 ng/ml compared with that of heifers with concentrations lower than 1 ng/ml. Of heifers with serum P(4) greater than 1 ng/ml, the pregnancy rate to AI tended to be higher when concentrations exceeded 2 ng/ml than when concentrations were 1 to 2 ng/ml. In cyclic heifers, timed insemination can increase the percentage of heifers pregnant after being synchronized with MGA/PG.  相似文献   

18.
Three trials utilizing 231 beef heifers were conducted in 1993 to determine if a timed insemination would result in similar synchronized pregnancy rates as insemination by estrus following synchronization of estrus using the 14-d MGA-prostaglandin system. All heifers were fed 0.5 mg MGA/h/d fof 14 d and given a 25 mg injection of PGF(2)alpha im 17 d after the final day of MGA feeding. Heifers in Group 1 (timed AI treatment) were inseminated at 72 h after the prostaglandin injection independent of whether or not they were observed in estrus. Heifers in Group 2 (AI by estrus) were inseminated 12 to 18 h after the onset of estrus. Since the trial was a significant source of variation for synchronized pregnancy rate, the effect of treatment on pregnancy rate was analyzed for each trial. Synchronized pregnancy rates in Trials 2 and 3 were similar in both treatment groups; 37 vs 35% and 61 vs 58% for the timed AI vs AI by estrus (Groups 1 and 2) in Trials 2 and 3, respectively. In both of these trials the degree of estrous synchrony was high. In Trial 1, the synchronized pregnancy rate in heifers that were time-inseminated was significantly lower than that of heifers that were inseminated by estrus (29 vs 57%). The lower synchronized pregnancy rate of Group 1 (timed AI) heifers in Trial 1 appeared to be due to the low degree of estrous synchrony in this trial. Our results indicate that using timed insemination with the 14-d MGA-prostaglandin system will give similar synchronized pregnancy rates as inseminating by estrus in groups of beef heifers where the degree of synchrony is high. However, in heifers where the degree of estrous synchrony is low, a timed insemination reduces synchronized pregnancy rates.  相似文献   

19.
Israeli-Holstein breed dairy heifers (n = 571), 13 to 15 mo old, were utilized in two experiments. In Experiment 1, the reproductive performance of synchronized heifers was compared with that of untreated controls. The heifers in both groups were inseminated following the detection of estrus. In Experiment 2, all heifers were synchronized and inseminated following the detection of estrus. Half of the animals in this experiment also received one or two fixed-time inseminations 72 and 96 h after the last synchronization treatment. Synchronization of estrous cycles was performed by two prostaglandin F(2alpha) (PG) injections given 12 d apart. In the control group of Experiment 1, observation of estrous behavior and insemination of heifers detected in estrus were carried out daily throughout the experiment. In the synchronized groups of Experiments 1 and in 2, the management of reproduction consisted of estrus detection followed by the insemination of heifers in estrus carried out only during 6 d of every 3 wk. Five days following the second PG injection, 86% of the heifers were detected in estrus, 71% of them at 49 to 96 h after treatment. In Experiment 1, age at first insemination, age at conception, and conception rate were, respectively, 425 d, 446 d and 54% in the control group vs 432 d (P<0.02), 449 d and 62% in the PG-treated group. In Experiment 2, the respective figures were 436 d, 462 d and 59% in the group inseminated following the detection of estrus vs 427 d (P<0.002), 464 d and 51% (P<0.05) in the group in which heifers were inseminated at estrus and also received one or two fixed-time inseminations.  相似文献   

20.
Effect of timing of artificial insemination on gender ratio in beef cattle   总被引:3,自引:0,他引:3  
It was recently reported that cows inseminated at approximately 10 or 20 h before an expected ovulation deliver predominately a bull or heifer calf, respectively. The objective of this study was to further investigate the effect of timing of insemination on the gender of offspring in cattle. Angus heifers (n = 41) and cows (n = 98) were used in the study. Heifers were synchronized with a 16-d treatment of melengestrol acetate followed 17 d later with an injection of PGF2alpha. Cows were synchronized with GnRH followed 7 d later with PGF2alpha. A HeatWatch electronic estrus detection system was used to determine the onset of estrus. Based on previous studies, it was assumed that ovulation occurs approximately 32 h after the onset of estrus. Therefore, animals were artificially inseminated at either 8 to 10 h (early; > or = 20 h before expected ovulation) or 20 to 25 h (late; < or = 10 h before expected ovulation) after the onset of estrus. Sixty to 80 d after insemination, ultrasonography was used to confirm pregnancy status and to determine the gender of fetuses. Gender of calves was subsequently confirmed at calving. Data were analyzed for effects of time of insemination and sire or semen batch on gender ratio, as well as any effect of length and/or intensity of estrus on conception rate and gender ratio. Twenty-nine of 41 heifers and 69 of 98 cows were detected in estrus after synchronization and were inseminated; 20 of 29 heifers and 48 of 69 cows were subsequently confirmed pregnant. Neither the length of estrus nor its intensity (number of mounts) had an effect on pregnancy rate or gender ratio (P > or = 0.418). Timing of insemination (early versus late) had no effect on gender ratio (P = 0.887). Semen from 13 sires representing 17 lots was used to inseminate the cows and heifers. No differences (P = 0.494) were detected in the gender ratios resulting from different sires or semen batches. In contrast to previous findings, our results indicate that inseminating beef cattle at approximately 20 or 10 h before an expected ovulation does not alter the gender ratio of the resultant calves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号