首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Within the complex food webs that occur on coral reefs, mesopredatory fish consume small-bodied prey and transfer accumulated biomass to other trophic levels. We estimated biomass, growth and mortality rates of three common mesopredators from Ningaloo Reef in Western Australia to calculate their annual turnover rates and potential contribution to local trophic dynamics. Biomass estimates of the serranid Epinephelus rivulatus (4.46 ± 0.76 g m−2) were an order of magnitude greater than two smaller-bodied mesopredatory fishes, Pseudochromis fuscus (0.10 ± 0.03 g m−2) and Parapercis clathrata (0.23 ± 0.31 g m−2). Growth parameters generated from a von Bertalanffy growth function fitted to size-at-age data, however, indicated that mortality rates for the three mesopredators were similar and that 32–55 % of fish survived each year. Consequently, interspecific differences in annual turnover rates among E. rivulatus (1.9 g m−2 yr−1), Pa. clathrata (0.10 g m−2 yr−1) and Ps. fuscus (0.07 g m−2 yr−1) were an artefact of differences in local biomass estimates. The rapid turnover estimates for E. rivulatus suggest this species is an important conduit of energy within the isolated patch reef habitat where it is typically found, while Ps. fuscus and Pa. clathrata channel smaller amounts of energy from specific habitats in the Ningaloo lagoon. Apparent differences in habitat, diet and turnover rates of the three species examined provide an insight into the different roles these species play in coral reef food webs and suggest that life-history traits allow for variability in the local and spatial contribution of these species at Ningaloo Reef. Moreover, calculating turnover rates of a broader suite of fish species from a range of trophic groups will help better define the role of fishes in coral reef trophic dynamics.

  相似文献   

2.
Penguins are a monophyletic group in which many species are found breeding sympatrically, raising questions regarding how these species coexist successfully. Here, the isotopic niche of three sympatric pygoscelid penguin species was investigated at Powell Island, South Orkney Islands, during two breeding seasons (austral summers 2013–2014 and 2015–2016). Measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope ratios were obtained from blood (adults) or feather (chicks) samples collected from Adélie Pygoscelis adeliae, chinstrap P. antarctica, and gentoo P. papua penguins. Isotopic niche regions (a proxy for the realized trophic niches) were computed to provide estimates of the trophic niche width of the studied species during the breeding season. The isotopic niche regions of adults of all three species were similar, but gentoo chicks had noticeably wider isotopic niches than the chicks of the other two species. Moderate to strong overlap in isotopic niche among species was found during each breeding season and for both age groups, suggesting that the potential for competition for shared food sources was similar during the two study years, although the actual level of competition could not be determined owing to the lack of data on resource abundance. Clear interannual shifts in isotopic niche were seen in all three species, though of lower amplitude for adult chinstrap penguins. These shifts were due to variation in carbon, but not nitrogen, isotopic ratios, which could indicate either a change in isotopic signature of their prey or a switch to an alternative food web. The main conclusions of this study are that (1) there is a partial overlap in the isotopic niches of these three congeneric species and that (2) they responded similarly to changes that likely occurred at the base of their food chain between the 2 years of the study.  相似文献   

3.
Ali Arab  Gina M. Wimp 《Oecologia》2013,173(2):331-341
While numerous studies have examined the effects of increased primary production on higher trophic levels, most studies have focused primarily on the grazing food web and have not considered the importance of alternate prey channels. This has happened despite the fact that fertilization not only increases grazing herbivore abundance, but other types of consumers such as detritivores that serve as alternate prey for generalist predators. Alternate prey channels can sustain generalist predators at times when prey abundance in the grazing food web is low, thus increasing predator densities and the potential for trophic cascades. Using arthropod data from a fertilization experiment, we constructed a hierarchical Bayesian model to examine the direct and indirect effects of plant production and alternate prey channels on predators in a salt marsh. We found that increased plant production positively affected the density of top predators via effects on lower trophic level herbivores and mesopredators. Additionally, while the abundance of algivores and detritivores positively affected mesopredators and top predators, respectively, the effects of alternate prey were relatively weak. Because previous studies in the same system have found that mesopredators and top predators rely on alternate prey such as algivores and detritivores, future studies should examine whether fertilization shifts patterns of prey use by predators from alternate channels to the grazing channel. Finally, the hierarchical Bayesian model used in this study provided a useful method for exploring trophic relationships in the salt marsh food web, especially where causal relationships among trophic groups were unknown.  相似文献   

4.
The structure of the food web including the endangered lycaenid butterfly Shijimiaeoides divinus asonis (Matsumura) was analyzed to identify species contributing most to maintaining the equilibrium of the food web. Twenty‐seven species belonging to 17 families fed on Sophora flavescens Aiton, the host‐plant of S. divinus asonis: 15 species were leaf and stem feeders, seven (including S. divinus asonis) fed on flower buds, four were flower feeders and one fed on the seeds of So. flavescens. Of these 27 species, four were omnivores. The natural enemies of S. divinus asonis comprised six insect species, 11 spider species and one entomopathogenic fungus species, including six new predator records. The linkage density, total number of trophic links, connectance, average chain length and predator–prey ratio were 1.617, 97, 0.0548, 2.267 and 0.694, respectively. Exclusion of any of the 15 species with four or more trophic links reduced the connectance of the food web. These 15 species included facultative mutualistic attendant ants and predators of S. divinus asonis, herbivores to So. flavescens, an omnivore feeding on S. divinus asonis and So. flavescens, and prey insects. Therefore, future studies should monitor these 15 species.  相似文献   

5.
Food web studies provide a useful tool to assess the organization and complexity of natural communities. Nevertheless, the seasonal dynamics of food web properties, their environmental correlates, and potential association with community diversity and stability remain poorly studied. Here, we condensed an incomplete 6‐year community dataset of a subtropical coastal lake to examine how monthly variation in diversity impacts food web structure over an idealized time series for an averaged year. Phytoplankton, zooplankton, macroinvertebrates, and fish were mostly resolved to species level (n = 120 trophospecies). Our results showed that the seasonal organization of the food web could be aggregated into two clusters of months grouped here as ‘summer’ and ‘winter’. During ‘winter’, the food web decreases in size and complexity, with the number of trophospecies dropping from 106 to 82 (a 22.6% decrease in the number of nodes) and the trophic interactions from 1,049 to 637 between month extremes (a 39.3% drop in the number of links). The observed simplification in food web structure during ‘winter’ suggests that community stability is more vulnerable to the impact of any change during this period.  相似文献   

6.
7.
We quantified the diet of juvenile, scalloped hammerhead shark Sphyrna lewini in the area off Mazatlan, Sinaloa, Mexico, to understand their feeding ecology this shark. The prey species of Sphyrna lewini were identified and quantified from stomach content analysis. In addition, we determined the variations between genders. During two fishing seasons (2000–2001 and 2001–2002), we analyzed 232 stomachs, of which 85% contained food. The trophic spectrum was composed of three species of cephalopods, six of crustaceans and 19 species of fish from mainly pelagic and benthic habitats. According to the Index of Relative Importance (%IRI), the cephalopod Loliolopsis diomedeae with IRI = 18%, fish of the family Carangidae IRI = 25% and family Synodontidae IRI = 19% constituted the main prey in general. The trophic niche width was <0.4, which indicated that S. lewini juveniles in this area feed on a wide range of prey items, though they showed a preference for a few prey items.  相似文献   

8.
Food web models parameterised using body size show promise to predict trophic interaction strengths (IS) and abundance dynamics. However, this remains to be rigorously tested in food webs beyond simple trophic modules, where indirect and intraguild interactions could be important and driven by traits other than body size. We systematically varied predator body size, guild composition and richness in microcosm insect webs and compared experimental outcomes with predictions of IS from models with allometrically scaled parameters. Body size was a strong predictor of IS in simple modules (r2 = 0.92), but with increasing complexity the predictive power decreased, with model IS being consistently overestimated. We quantify the strength of observed trophic interaction modifications, partition this into density‐mediated vs. behaviour‐mediated indirect effects and show that model shortcomings in predicting IS is related to the size of behaviour‐mediated effects. Our findings encourage development of dynamical food web models explicitly including and exploring indirect mechanisms.  相似文献   

9.
An ecological niche has been defined as an n‐dimensional hypervolume formed by conditions and resources that species need to survive, grow, and reproduce. In practice, such niche dimensions are measurable and describe how species share resources, which has been thought to be a crucial mechanism for coexistence and a major driver of broad biodiversity patterns. Here, we investigate resource partitioning and trophic interactions of three sympatric, phylogenetically related and morphologically similar species of thrushes (Turdus spp.). Based on one year of data collected in southern Brazil, we investigated niche partitioning using three approaches: diet and trophic niche assessed by fecal analysis, diet and niche estimated by stable isotopes in blood and mixing models, and bipartite network analysis derived from direct diet and mixing model outputs. Approaches revealed that the three sympatric thrushes are generalists that feed on similar diets, demonstrating high niche overlap. Fruits from C3 plants were one of the most important food items in their networks, with wide links connecting the three thrush species. Turdus amaurochalinus and T. albicollis had the greatest trophic and isotopic niche overlap, with 90% and 20% overlap, respectively. There was partitioning of key resources between these two species, with a shared preference for fig tree fruits—Ficus cestrifolia (T. amaurochalinus PSIRI% = 11.3 and T. albicollis = 11.5), which was not present in the diet of T. rufiventris. Results added a new approach to the network analysis based on values from the stable isotope mixing models, allowing comparisons between traditional dietary analysis and diet inferred by isotopic mixing models, which reflects food items effectively assimilated in consumer tissues. Both are visualized in bipartite networks and show food‐consumers link strengths. This approach could be useful to other studies using stable isotopes coupled to network analysis, particularly useful in sympatric species with similar niches.  相似文献   

10.
The boreal Northeast Atlantic is strongly affected by current climate change, and large shifts in abundance and distribution of many organisms have been observed, including the dominant copepod Calanus finmarchicus, which supports the grazing food web and thus many fish populations. At the same time, large‐scale declines have been observed in many piscivorous seabirds, which depend on abundant small pelagic fish. Here, we combine predictions from a niche model of C. finmarchicus with long‐term data on seabird breeding success to link trophic levels. The niche model shows that environmental suitability for C. finmarchicus has declined in southern areas with large breeding seabird populations (e.g. the North Sea), and predicts that this decline is likely to spread northwards during the 21st century to affect populations in Iceland and the Faroes. In a North Sea colony, breeding success of three common piscivorous seabird species [black‐legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge) and Atlantic puffin (Fratercula arctica)] was strongly positively correlated with local environmental suitability for C. finmarchicus, whereas this was not the case at a more northerly colony in west Norway. Large seabird populations seem only to occur where C. finmarchicus is abundant, and northward distributional shifts of common boreal seabirds are therefore expected over the coming decades. Whether or not population size can be maintained depends on the dispersal ability and inclination of these colonial breeders, and on the carrying capacity of more northerly areas in a warmer climate.  相似文献   

11.
12.
Little research has been conducted on effects of iteroparous anadromous fishes on Arctic lakes. We investigated trophic ecology, fish growth, and food web structure in six lakes located in Nunavut, Canada; three lakes contained anadromous Arctic charr (Salvelinus alpinus) whereas three lakes did not contain Arctic charr. All lakes contained forage fishes and lake trout (Salvelinus namaycush; top predator). Isotope ratios (δ13C, δ15N) of fishes and invertebrates did not differ between lakes with and without anadromous Arctic charr; if anadromous Arctic charr deliver marine-derived nutrients and/or organic matter to freshwater lakes, these inputs could not be detected with δ13C and/or δ15N. Lake trout carbon (C):nitrogen (N) and condition were significantly higher in lakes with Arctic charr (C:N = 3.42, K = 1.1) than in lakes without Arctic charr (C:N = 3.17, K = 0.99), however, and ninespine stickleback (Pungitius pungitius) condition was significantly lower in lakes with Arctic charr (K = 0.58) than in lakes without Arctic charr (K = 0.64). Isotope data indicated that pre-smolt and resident Arctic charr may be prey for lake trout and compete with ninespine stickleback. Linear distance metrics applied to isotope data showed that food webs were more compact and isotopically redundant in lakes where Arctic charr were present. Despite this, lake trout populations in lakes with Arctic charr occupied a larger isotope space and showed greater inter-individual isotope differences. Anadromous Arctic charr appear to affect ecology and feeding of sympatric freshwater species, but effects are more subtle than those seen for semelparous anadromous species.  相似文献   

13.
Understanding the ecological role of species with overlapping distributions is central to inform ecosystem management. Here we describe the diet, trophic level and habitat use of three sympatric stingrays, Hypanus guttatus, H. marianae and H. berthalutzae, through combined stomach content and stable isotope (δ13C and δ15N) analyses. Our integrated approach revealed that H. guttatus is a mesopredator that feeds on a diverse diet of benthic and epibenthic marine and estuarine organisms, principally bivalve molluscs, Alpheus shrimp and teleost fishes. Isotopic data supported movement of this species between marine and estuarine environments. H. berthalutzae is also a marine generalist feeder, but feeds primarily on teleost fishes and cephalopods, and consequently occupies a higher trophic level. In contrast, H. marianae is a mesopredator specialized on shrimps and polychaetas occurring only in the marine environment and occupying a low niche breadth. While niche overlap occurred, the three stingrays utilized the same prey resources at different rates and occupied distinct trophic niches, potentially limiting competition for resources and promoting coexistence. These combined data demonstrate that these three mesopredators perform different ecological roles in the ecosystems they occupy, limiting functional redundancy.  相似文献   

14.
Diet studies provide base understanding of trophic structure and are a valuable initial step for many fields of marine ecology, including conservation and fisheries biology. Considerable complexity in marine trophic structure can exist due to the presence of highly mobile species with long life spans. Mobula rays are highly mobile, large, planktivorous elasmobranchs that are frequently caught either directly or as bycatch in fisheries, which, combined with their conservative life history strategy, makes their populations susceptible to decline in intensely fished regions. Effective management of these iconic and vulnerable species requires an understanding of the diets that sustain them, which can be difficult to determine using conventional sampling methods. We use three DNA metabarcode assays to identify 44 distinct taxa from the stomachs (n = 101) of four sympatric Mobula ray species (Mobula birostris, Mobula tarapacana, Mobula japanica, and Mobula thurstoni) caught over 3 years (2013–2015) in a direct fishery off Bohol in the Philippines. The diversity and incidence of bony fishes observed in ray diets were unprecedented. Nevertheless, rays showed dietary overlap, with krill (Euphausia) dominating their diet. Our results provide a more detailed assessment of sympatric ray diets than was previously described and reveal the complexity that can exist in food webs at critical foraging habitats.  相似文献   

15.
Over the past decade diatom blooms of domoic acid (DA)-producing Pseudo-nitzschia spp. have been responsible for numerous marine mammal and bird mortalities in Monterey Bay, CA. One possible toxin vector is the market squid, Loligo opalescens, a small pelagic mollusk that plays an important role in the near-shore food web of the California Current ecosystem as a favored vertebrate prey species. This study examined the trophic link between toxic Pseudo-nitzschia and L. opalescens using toxin and stomach content analyses of animals collected from Monterey Bay, CA in 2000. Receptor binding assay data (confirmed by tandem mass spectrometry), demonstrated the presence of DA in squid during a toxic Pseudo-nitzschia event, with P. australis frustules observed in stomach samples. Though DA levels were low (<0.5 μg DA g−1 tissue) in L. opalescens during the study period, it is now clear that this potent neurotoxin can occur in squid and is likely delivered through its krill prey species, which are known to retain DA after feeding on toxic Pseudo-nitzschia. Our findings suggest that further study of the relationship between Pseudo-nitzschia blooms and DA contamination of squid is warranted to better evaluate the potential health risk to humans and wildlife associated with this major commercial seafood species and important prey item.  相似文献   

16.
Behavioural trophic cascades highlight the importance of indirect/risk effects in the maintenance of healthy trophic‐level links in complex ecosystems. However, there is limited understanding on how the loss of indirect top–down control can cascade through the food‐web to modify lower level predator–prey interactions. Using a reef fish food‐web, our study examines behavioural interactions among predators to assess how fear elicited by top‐predator cues (visual and chemical stimuli) can alter mesopredator behaviour and modify their interaction with resource prey. Under experimental conditions, the presence of any cue (visual, chemical, or both) from the top‐predator (coral trout Plectropomus leopardus) strongly restricted the distance swum, area explored and foraging activity of the mesopredator (dottyback Pseudochromis fuscus), while indirectly triggering a behavioural release of the resource prey (recruits of the damselfish Pomacentrus chrysurus). Interestingly, the presence of a large non‐predator species (thicklip wrasse Hemigymnus melapterus) also mediated the impact of the mesopredator on prey, as it provoked mesopredators to engage in an ‘inspection’ behaviour, while significantly reducing their feeding activity. Our study describes for the first time a three‐level behavioural cascade of coral reef fish and stresses the importance of indirect interactions in marine food‐webs.  相似文献   

17.
Juha Mikola 《Oecologia》1998,117(3):396-403
Previous theoretical and empirical evidence suggests that species composition within trophic levels may profoundly affect the response of trophic-level biomasses to enhanced basal resources. To test whether species composition of microbivorous nematodes has such an effect in microbial-based soil food webs, I created three microcosm food webs, consisting of bacteria, fungi, bacterial-feeding nematodes (Acrobeloides tricornus, Caenorhabditis elegans), fungal-feeding nematodes (Aphelenchus avenae, Aphelenchoides sp.) and a predatory nematode (Prionchulus punctatus). The food webs differed in species composition at the second trophic level: food web A included A. tricornus and Aph. avenae, food web B included C. elegans and Aphelenchoides sp., and food web AB included all four species. I increased basal resources by adding glucose to half of the replicates of each food web, and sampled microcosms destructively four times during a 22-week experiment to estimate the biomass of organisms at each trophic level. Microbivore species composition significantly affected bacterivore and fungivore biomass but not bacterial, fungal or predator biomass. Greatest bacterivore and fungivore biomass was found in food web A, intermediate biomass in food web AB, and smallest biomass in food web B. Basal resource addition increased the biomass of microbes and microbivores but did not affect predator biomass. Importantly, microbivore species composition did not significantly modify the effect of additional resources on trophic-level biomasses. The presence of a competitor reduced the biomass of A. tricornus and Aph. avenae, in that the biomass of these species was less in food web AB than in food web A, whereas the biomass of C. elegans and Aphelenchoides sp. was not affected by their potential competitors. The biomass of Aph. avenae increased with additional resources in the absence of the competitor only, while the biomass of A. tricornus and Aphelenchoides sp. increased also in the presence of their competitors. The results imply that microbivore species composition may determine the second-level biomass in simple microbe-nematode food webs, but may not significantly affect biomass at other levels or modify the response of trophic-level biomasses to enhanced basal resources. The study also shows that even if the role of predation in a food web is diminished, the positive response of organisms to increased resource availability may still be hindered by competition. Received: 22 June 1998 / Accepted: 28 August 1998  相似文献   

18.
Trophic interactions and environmental conditions determine the structure of food webs and the host expansion of parasitoids into novel insect hosts. In this study, we investigate plant–insect–parasitoid food web interactions, specifically the effect of trophic resources and environmental factors on the presence of the parasitoids expanding their host range after the invasion of Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae). We also consider potential candidates for biological control of this non‐native pest. A survey of larval stages of Plusiinae (Lepidoptera: Noctuidae) and their larval parasitoids was conducted in field and vegetable greenhouse crops in 2009 and 2010 in various locations of Essex and Chatham‐Kent counties in Ontario, Canada. Twenty‐one plant–host insect–host parasitoid associations were observed among Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), C. chalcites, and larval parasitoids in three trophic levels of interaction. Chrysodeixis chalcites, an old‐world species that had just arrived in the region, was the most common in our samples. The larval parasitoids Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Cotesia vanessae (Reinhard), Cotesia sp., Microplitis alaskensis (Ashmead), and Meteorus rubens (Nees) (all Hymenoptera: Braconidae) expanded their host range into C. chalcites changing the structure of the food web. Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae) was the most common parasitoid of T. ni that was not found in the invasive species. Plant species, host abundance, and agro‐ecosystem were the most common predictors for the presence of the parasitoids expanding their host range into C. chalcites. Our results indicate that C. sonorensis, C. vanessae, and C. floridanum should be evaluated for their potential use in biological control of C. chalcites and T. ni.  相似文献   

19.
Rough scad Trachurus lathami is a key pelagic fish in the Argentinean continental shelf (ACS, south-west Atlantic Ocean), with recent increases in abundance. It is a main prey of fishes and marine mammals, and shares the environment with commercially relevant pelagic species (Engraulis anchoita and Scomber colias), playing an important role linking lower and upper trophic levels in the ecosystem. This study aims to determine the ontogenetic changes in the diet composition, feeding strategy, trophic niche breadth and trophic level of T. lathami in the North Patagonian Shelf (43°–45°30′S). The stomach contents of adult fish (n = 238) were analysed. The results suggest a clear ontogenetic shift in the diet at a size of ~190 mm. Smaller individuals (160–190 mm) were specialized on misidaceans, and showed the highest trophic level, while larger T. lathami (221–230 mm) consumed decapods (Peisos petrunkevitchi) and teleosts (eggs and larvae). Trophic niche breadth was higher at the medium-sized class (191–220 mm), which mainly preyed on copepods (Calanoides carinatus) and chaetognaths (Sagitta spp.), evidencing a more diverse diet and a rather generalist strategy. Updated information on the trophic ecology of T. lathami evidences its extremely plastic feeding behaviour, being able to adapt its trophic niche to the most readily available food items from the mesopelagic community.  相似文献   

20.
Hatchery‐reared fish are commonly stocked into freshwaters to enhance recreational angling. As these fishes are often of high trophic position and attain relatively large sizes, they potentially interact with functionally similar resident fishes and modify food‐web structure. Hatchery‐reared barbel Barbus barbus are frequently stocked to enhance riverine cyprinid fish communities in Europe; these fish can survive for over 20 years and exceed 8 kg. Here, their trophic consequences for resident fish communities were tested using cohabitation studies, mainly involving chub Squalius cephalus, a similarly large‐bodied, omnivorous and long‐lived species. These studies were completed over three spatial scales: pond mesocosms, two streams and three lowland rivers, and used stable isotope analysis. Experiments in mesocosms over 100 days revealed rapid formation of dietary specializations and discrete trophic niches in juvenile B. barbus and S. cephalus. This niche partitioning between the species was also apparent in the streams over 2 years. In the lowland rivers, where fish were mature individuals within established populations, this pattern was also generally apparent in fishes of much larger body sizes. Thus, the stocking of these hatchery‐reared fish only incurred minor consequences for the trophic ecology of resident fish, with strong patterns of trophic niche partitioning and diet specialization. Application of these results to decision‐making frameworks should enable managers to make objective decisions on whether cyprinid fish should be stocked into lowland rivers according to ecological risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号