首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Due to the high incidence of fungal infections caused by Candida species and their increasing resistance to antimicrobial treatments, alternative therapies such as probiotics have been studied. It has been show that several species of the genus Lactobacillus have anti-Candida activity, probably by direct inhibition, through competition for adhesion sites or production of secondary metabolites, and by indirect inhibition, through stimulation of the immune system of their host. However, the mechanisms of inhibition of these probiotics on Candida species have not yet been fully elucidated since this effect is related to more than one inhibition pathway. In the literature, several in vitro and in vivo studies have been developed seeking to elucidate the probiotics mechanisms of action. These studies have been focused on C. albicans inhibition assays, including analysis of antimicrobial activity, adherence capacity, biofilms formation, filamentation and interference on virulence genes, as well as assays of experimental candidiasis in invertebrate and vertebrate models. In this context, the purpose of this review was to gather different studies focused on the action mechanism of probiotic strains on Candida sp. and to discuss their impact on the candidiasis prevention.  相似文献   

2.
L-asparaginase is a vital enzyme of medical importance, and renowned as a chemotherapeutic agent. The relevance of this enzyme is not only limited as an anti-cancer agent, it also possesses a wide range of medical application. The application includes the antimicrobial property, treatment of infectious diseases, autoimmune diseases, canine and feline cancer. Apart from the health care industry, its significance is also established in the food sector as a food processing agent to reduce the acrylamide concentration. L-asparaginase is known to be produced from various bacterial, fungal and plant sources. However, there is a huge market demand due to its wide range of application. Therefore, the industry is still in the search of better-producing source in terms of high yield and low immunogenicity. It can be produced by both submerged and solid state fermentation, and each fermentation process has its own merits and demerits. This review paper focuses on its improved production strategy by adopting statistical experimental optimization techniques, development of recombinant strains, through mutagenesis and nanoparticle immobilization, adopting advanced and cost-effective purification techniques. Available research literature proves the competence and therapeutic potential of this enzyme. Therefore, research orientation toward the exploration of this clinical significant enzyme has to be accelerated. The objectives of this review are to discuss the high yielding sources, current production strategies, improvement of production, effective downstream processing and therapeutic application of L-asparaginase.  相似文献   

3.
长期以来,白蚁对木质纤维素的降解能力令人惊叹,毫无疑问,其在全球碳循环中扮演着一个十分重要的角色。这一强大功能的实现极大地依赖于一种特别的肠道"消化液(digestome)",它的构成不仅包括了来自白蚁自身产生的木质纤维素降解酶系统,还来源于独特与多样的肠道共生微生物的贡献(包括了古细菌、细菌、酵母以及其他真核生物),它们的协同作用能有效地将木质纤维素生物质高效转化为乙酸、甲烷、二氧化碳、氢气等物质。然而,到目前为止,我们对这类昆虫的独特肠道生物转化系统的认识还很不深入,特别是针对肠道内的那些各类共生微生物菌群的功能、白蚁与共生微生物间的相互关系、以及潜在的科学与应用价值还无法给予明确的科学解释,更不用说针对其肠道中的共生酵母菌群,一类通常被忽略的独特微生物。近20多年来,越来越多的研究证据表明,白蚁肠道共生酵母在与寄主的关系中表现了不可或缺的重要性与独特功能,已被证明广泛分布于不同白蚁及许多其他昆虫的肠道中。随着近20年来越来越多昆虫肠道共生微生物酵母群被发现和鉴定,他们潜在的功能以及与寄主的共生机制被逐步解析,这些研究结果进一步揭示了"隐身"的昆虫肠道酵母类微生物菌群与寄主的营养、关键生物质转化过程中的重要酶系统、转化过程中的关键中间产物的转化与利用、抵御外源性的重要病原物,甚至对白蚁种群繁衍的远缘交配等方面均可能发挥了重要和不可缺少的作用。本文将试图归纳相关研究的最新进展,系统总结与解析白蚁肠道来源共生酵母的重要科学价值及其在不同领域的潜在应用前景。  相似文献   

4.
The last years there has been a significant rise in the number of publications in the international literature that deal with the production of lipids by microbial sources (the ‘single cell oils; SCOs’ that are produced by the so‐called ‘oleaginous’ micro‐organisms). In the first part of the present review article, a general overview of the oleaginous micro‐organisms (mostly yeasts, algae and fungi) and their potential upon the production of SCOs is presented. Thereafter, physiological and kinetic events related with the production of, mostly, yeast and fungal lipids when sugars and related substrates like polysaccharides, glycerol, etc. (the de novo lipid accumulation process) or hydrophobic substrates like oils and fats (the ex novo lipid accumulation process) were employed as microbial carbon sources, are presented and critically discussed. Considerations related with the degradation of storage lipid that had been previously accumulated inside the cells, are also presented. The interplay of the synthesis of yeast and fungal lipids with other intracellular (i.e. endopolysaccharides) or extracellular (i.e. citric acid) secondary metabolites synthesized is also presented. Finally, aspects related with the lipid extraction and lipidome analysis of the oleaginous micro‐organisms are presented and critically discussed.  相似文献   

5.
Aims: The aim of this study was to examine the physiological and genetic stability of hybrids of industrial wine yeasts Saccharomyces sensu stricto complex subjected to acidic stress during fermentation. Methods and Results: Laboratory‐constructed yeast hybrids, one intraspecific Saccharomyces cerevisiae × S. cerevisiae and three interspecific S. cerevisiae ×Saccharomyces bayanus, were subcultured in aerobic or anaerobic conditions in media with or without l ‐malic acid. Changes in the biochemical profiles, karyotypes and mitochondrial DNA profiles of the segregates were assessed after 50–190 generations. All yeast segregates showed a tendency to increase the range of the tested compounds utilized as sole carbon sources. Interspecific hybrids were alloaneuploid and their genomes tended to undergo extensive rearrangement especially during fermentation. The karyotypes of segregates lost up to four and appearance up to five bands were recorded. The changes in their mtDNA patterns were even broader reaching 12 missing and six additional bands. These hybrids acquired the ability to sporulate and significantly changed their biochemical profiles. The alloaneuploid intraspecific S. cerevisiae hybrid was characterized by high genetic stability despite the phenotypic changes. l ‐malic acid was not found to affect the extent of genomic changes of the hybrids, which suggests that their demalication ability is combined with resistance to acidic stress. Conclusions: The results reveal the plasticity and extent of changes of chromosomal and mitochondrial DNA of interspecific hybrids of industrial wine yeast especially under anaerobiosis. They imply that karyotyping and restriction analysis of mitochondrial DNA make it possible to quickly assess the genetic stability of genetically modified industrial wine yeasts but may not be applied as the only method for their identification and discrimination. Significance and Impact of the Study: Laboratory‐constructed interspecific hybrids of industrial strains may provide a model for studying the adaptive evolution of wine yeasts under fermentative stress.  相似文献   

6.
The genus Lactobacillus has been widely used in food industry as starter or adjunct culture due to its probiotic features. Its biotechnological features improve the spectrum of uses of lactobacilli, which can affect its applicability directly. In this sense, this literature review gathers information and discusses the biotechnological potential of technological/probiotic lactobacilli aiming to improve food quality and human health. The primary and secondary metabolism generates specific substances, such as organic acids, carbon dioxide, hydrogen peroxide, diacetyl, fatty acids, and bacteriocins, which are determinant due to their probiotic potential, antimicrobial activity, and the development of new food flavors. In order to become industrially and commercially attractive, it is necessary develop a large-scale process with lower production costs.  相似文献   

7.
Old yellow enzymes (OYEs, EC 1.6.99.1) are flavin-dependent oxidoreductases that catalyze the stereoselective trans-hydrogenation of the double bond, representing a promising alternative to metal-based catalysis. Bioconversion of ketoisophorone (KIP) by 28 non-conventional yeasts belonging to 16 different species was investigated. Growing cells of most of the strains reduced KIP via OYE and showed high stereoselectivity, producing R-levodione as major product. Competition by carbonyl reductase (CR) activity was observed in several strains. The best performing yeasts belong to Candida castellii, Kazachstania spencerorum and Kluyveromyces marxianus exhibited yields of levodione ≥77% up to 95% e.e., and. Candida freyschussii, the sole strain lacking the OYE gene, reduced KIP only to unsaturated alcohols via CR. Nine unedited OYE genes were cloned, sequenced, and heterologously expressed in Saccharomyces cerevisiae BY4741ΔOye2, a mutant that showed negligible OYE and CR activities. Compared with the corresponding wild-type yeasts, growing cells of the recombinant strains bioconverted KIP with improved yields of OYE products, minor competition by CR activity, and lower enantioselectivity. In particular, resting cells of recombinant S. cerevisae presented the best performance in KIP bioconversion. Based on the results herein reported, selected strains of non-conventional yeasts and novel OYE genes can be profitably used as innovative biocatalysts in asymmetric reductions.  相似文献   

8.
ε-聚赖氨酸是由L-赖氨酸α-COOH和ε-NH2 缩合而成,由微生物合成的一种同型氨基酸聚合物.ε-聚赖氨酸是一种优良的生物防腐剂,对G+、G-、酵母菌和霉菌都有较好的抑菌效果.本文综述了ε-聚赖氨酸的来源与性质、产生菌的筛选与改造、发酵过程优化与调控、ε-聚赖氨酸分解酶、ε-聚赖氨酸合成机理和ε-聚赖氨酸酯化结构与...  相似文献   

9.
Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.  相似文献   

10.
11.
Biotechnological production of biodiesel has attracted considerable attention during the past decade compared to chemical-catalysed production since biocatalysis-mediated transesterification has many advantages. Currently, there are extensive reports on enzyme-catalysed transesterification for biodiesel production; the related research can be classified into immobilised-extracellular and immobilised-intracellular biocatalysis and this review focusses on these forms of biocatalyst for biodiesel production. The optimisation of the most important operating conditions affecting lipase-catalysed transesterification and the yield of alkyl esters, such as the type and form of lipase, the type of alcohol, the presence of organic solvents, the content of water in the oil, temperature and the presence of glycerol, are discussed. However, there is still a need to optimise lipase-catalysed transesterification and reduce the cost of lipase production before it is applied commercially. Optimisation research of lipase-catalysed transesterification could include development of new reactor systems with immobilised biocatalysts, the use of lipases tolerant to organic solvents, intracellular lipases (whole microbial cells) and genetically modified microorganisms (intelligent yeasts). Biodiesel fuel is expensive in comparison with petroleum-based fuel and 60–70% of the cost is associated with feedstock oil and enzyme. Therefore ways of reducing the cost of biodiesel with respect to enzyme and substrate oils reported in literature are also presented.  相似文献   

12.
为了阐明草地螟Loxostege sticticalis大发生种群幼虫取食行为特征, 在室内条件下(温度22±1℃, 相对湿度70%)对不同幼虫密度[1, 10, 30头/瓶(650 mL)]饲养草地螟幼虫的食物利用率及消化酶活性进行了研究。结果表明: 幼虫中等(或高)密度对草地螟幼虫相对中肠重量、 相对取食量、 粪便干重、 食物利用率和近似消化率及总蛋白酶和亮氨酸氨肽酶活性影响显著。幼虫相对中肠重量以10头/瓶的幼虫密度最大, 1头/瓶的幼虫密度最小。随着幼虫密度的增加, 幼虫相对取食量和粪便干重增加, 而虫体干重减轻, 幼虫食物利用率降低。幼虫密度30头/瓶的幼虫相对取食量和粪便干重显著高于1和10头/瓶的, 而30头/瓶的幼虫食物利用率显著低于1头/瓶的。幼虫近似消化率随幼虫密度的逐渐增加而显著降低。幼虫密度10头/瓶的幼虫总蛋白酶和亮氨酸氨肽酶的活性显著高于1和30头/瓶的, 而淀粉酶的活性受幼虫密度影响不显著。随幼虫密度的增加, 幼虫相对中肠重量与总蛋白酶和亮氨酸氨肽酶活性变化趋势较为一致, 消化酶活性的变化可能与相对中肠重量大小有关。因此, 幼虫密度是影响草地螟幼虫取食行为的重要因子, 这些结果为阐明草地螟大发生种群与一般种群的为害特征提供了重要理论依据。  相似文献   

13.
白腐菌液体和固体培养产生木质纤维素降解酶的比较研究   总被引:1,自引:0,他引:1  
谢君  黄乾明  冯蕾  徐宁  杨军 《菌物学报》2007,26(2):266-272
侧耳sp2(Pleurotus sp.2)和粗毛栓菌(Trametes gallica)是产木质纤维素降解酶能力强,且产酶较快的菌株。对其在液体培养基、固体培养基中产生木质纤维素降解酶能力和行为进行了比较分析和研究。结果表明,Pleurotus sp.2在低氮高碳高无机盐培养基中的锰过氧化物酶(Manganese peroxidases, MnPs)、木质素过氧化物酶(Lignin peroxidases.LiPs)、漆酶(laccases,Lacs)和半纤维素酶(Hemicellulases, Hcels)的活性最高。当该菌株培养在含有低氮无碳高无机盐液体培养基的麦草粉中时,MnPs和Lacs的活性峰值均出现在10d,而Hcels的活性在40d时达到峰值。Trametes gallica在高氮低碳高无机盐培养基中的Lacs和LiPs的活性最高,在低氮高碳高无机盐培养基中的MnPs和Hcels的活性最高。当该菌株培养在含有高氮无碳高无机盐和低氮无碳高无机盐液体培养基的麦草粉中时,MnPs存10d、Lacs和Hcels在40d、LiPs存50d,分别达到峰值。Pleurotus sp.2和Trametes gallica在液体培养基中具有很强的木质纤维素降解酶产生能力且产酶速度较快,在固体培养基中具有很强的降解麦秸生物质能力,但这两株菌在液体和固体培养基中,产木质纤维素降解酶的能力和行为都有较大的差异,相关性小。  相似文献   

14.
15.
AIMS: The beta-glucosidase activity is involved in the hydrolysis of several important compounds for the development of varietal wine flavour. The aim of the present study was to investigate the production of beta-glucosidase in a number of wine-related yeast strains and to measure and identify this activity over the course of grape juice fermentation. METHODS AND RESULTS: beta-glucosidase activity was measured as the amount of 4-methylumbelliferone released from 4-methylumbelliferyl-beta-d-glucopyranoside substrate. Intact cells of some grape and wine-spoilage yeasts showed beta-glucosidase activity much higher than those observed in wine yeasts "sensu stricto". During fermentation, three Saccharomyces cerevisiae strains, one Hanseniaspora valbyensis strain and one Brettanomyces anomalus strain showed beta-glucosidase activity both intra- and extracellularly. CONCLUSIONS: In the studied strains, beta-glucosidase activity was at its maximum when the cells were in the active growth phase. However, a lowering of medium pH to values around 3 during fermentation led to total loss of activity. SIGNIFICANCE AND IMPACT OF THE STUDY: During the course of this study, a new, rapid and reproducible method to assay beta-glucosidase activity was developed. The fact that Saccharomyces and non-Saccharomyces yeast strains are able to express beta-glucosidase activity during the alcoholic fermentation sheds new light on the contribution of these yeasts in the aroma expression of wines.  相似文献   

16.
There has been considerable interest in the use of biosurfactants due to the diversity of structures and the possibility of production from a variety of substrates. The potential for industrial applications has been growing, as these natural compounds are tolerant to common processing methods and can compete with synthetic surfactants with regards to the capacity to reduce surface and interfacial tensions as well as stabilise emulsions while offering the advantages of biodegradability and low toxicity. Among biosurfactant-producing microorganisms, some yeasts present no risks of toxicity or pathogenicity, making them ideal for use in food formulations. Indeed, the use of these biomolecules in foods has attracted industrial interest due to their properties as emulsifiers and stabilizers of emulsions. Studies have also demonstrated other valuable properties, such as antioxidant and antimicrobial activity, enabling the aggregation of greater value to products and the avoidance of contamination both during and after processing. All these characteristics allow biosurfactants to be used as additives and versatile ingredients for the processing of foods. The present review discusses the potential application of biosurfactants as emulsifying agents in food formulations, such as salad dressing, bread, cakes, cookies, and ice cream. The antioxidant, antimicrobial and anti-adhesive properties of these biomolecules are also discussed, demonstrating the need for further studies to make the use of the natural compounds viable in this expanding sector.  相似文献   

17.
食物过敏(food allergy,FA)的发病率在近二十年来持续上升,已经严重影响患者的生活质量.生命早期接触外源性抗原少而导致的免疫耐受限制是FA的主要原因.微生物-宿主的相互作用与FA密切相关,健康的微生物菌群促进宿主在生命早期建立成熟的免疫系统,减少FA的易感性,因此,改善肠道菌群和调节机体免疫在治疗FA中至关...  相似文献   

18.
From microbes to fish the next revolution in food production   总被引:3,自引:0,他引:3  
Increasing global population and the consequent increase in demand for food are not a new story. Agroindustrial activities such as livestock help meet this demand. Aquaculture arose decades ago and revolutionized the agroindustrial activity as a significant food generator. However, like livestock, aquaculture is based on finite resources and has been accused of being unsustainable. Abandoning aquaculture is not an option considering the food, foreign exchange, and employment it generates, and therefore must be reinvented. Among the many alternatives suggested to make aquaculture more sustainable, microorganisms have been highlighted as a direct food source for cultured fish and crustaceans, a strategy that promises to revolutionize aquaculture by eliminating waste. Considering waste, as part of a cycle, it can increase stock densities and reduce emissions of contaminants and operational costs.  相似文献   

19.
Lactobacilli have played a crucial role in the production of fermented products for millennia. Their probiotic effects have recently been studied and used in new products. Isolated cases of lactobacillemia have been reported in at-risk populations, but lactobacilli present an essentially negligible biological risk. We analyzed the current European guidelines for safety assessment in food/feed and conclude that they are not relevant for the Lactobacillus genus. We propose new specific guidelines, beginning by granting a 'long-standing presumption of safety' status to Lactobacillus genus based on its long history of safe use. Then, based on the available body of knowledge and intended use, only such tests as are useful will be necessary before attributing 'qualified presumption of safety' status.  相似文献   

20.
魏娜  徐琼  张宁  李炳学 《微生物学通报》2014,41(6):1211-1218
掷孢酵母是一类能够弹射孢子(称为掷孢子)的酵母菌,主要由Bullera属、Sporobolomyces属和Sporidiobolus属组成,该类酵母分布广泛。在实验室培养过程中多以芽殖、掷孢子以及菌丝状生长,Sporidiobolus属的菌株经配对能够形成有性孢子。分子生物学手段的开展使掷孢酵母各类群间的系统发育关系更加明确。本文结合本实验室的研究结果,阐述了掷孢酵母存在的细胞分化现象,并且推测细胞分化有助于菌体抵抗逆境。因此,掷孢酵母可以作为一种潜在的模式生物对抗逆机制进行探究。在食品和环境问题备受瞩目的今天,掷孢酵母以其可自身积累酯类、色素、酶类等有益代谢产物的特点,及治理污染物特性越来越受到人们的关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号