首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Until recently, the distribution of diatom species assemblages and their attributes (e.g. species richness and evenness) in relation to water depth have been identified but not quantified, especially across several lakes in a region. Here, we examined diatom assemblages in the surface sediment across a water‐depth gradient in eight small, boreal lakes in north‐western Ontario, minimally disturbed by human activities. 2. Surface‐sediment diatom assemblages were collected within each lake along a gentle slope from near‐shore to the centre deep basin of the lake, at a resolution of ~1 m water depth. Analysis of sedimentary samples provided an integrated view of assemblages that were living in the lake over several years and enabled a high‐resolution analysis of many lakes. The study lakes ranged in water chemistry, morphology and size and are located along an east–west transect approximately 250 km long in north‐western Ontario (Canada). 3. The majority of diatom species were distributed along a continuum of depth, with those taxa having similar habitat requirements forming distinct, though overlapping, assemblages. Three major zones of diatom assemblages in each lake were consistently identified: (i) a near‐shore assemblage of Achnanthes (sensu lato), Nitzschia, Cymbella (sensu lato) and other benthic species; (ii) a mid‐depth assemblage of small Fragilaria (sensu lato)/small Aulacoseira and various Navicula taxa; and (iii) a deep‐water assemblage of planktonic origin (mainly Discotella spp.). 4. The depth of the transition between assemblage zones varied between the eight lakes. The boundary between the deep‐water planktonic zone and the mid‐depth benthic zone varied according to water chemistry and was probably related to light attenuation. The boundary was deeper in lakes with the lower dissolved organic carbon and total phosphorus (TP) (i.e. less light attenuation) and vice versa. 5. Generally, species richness, species evenness and turnover rate of species as a function of depth were significantly lower in the planktonic assemblage zone in comparison with the two zones nearer the shore. Reproducibility of species and assemblage distributions across the depth gradient of the lakes illustrated that, despite potential for sediment transport, detailed ecological characterisation of diatom species can be gleaned from sedimentary data. Such data are often lacking, particularly for near‐shore benthic species.  相似文献   

2.
2010—2011年对洪泽湖大型水生植物进行了4个季度全面的调查和研究, 共发现大型水生植物8科12种, 其中沉水植物9种, 挺水植物1种, 浮叶植物2种。马来眼子菜(Potamogeton malaianus)、微齿眼子菜(P. maackianu)、篦齿眼子菜(P. pectinatus)和菹草(P. crispus)为全年优势度较高的水生植物, 但4个季节大型水生植物的优势种类组成差异明显。秋季的水草生物量最高, 其次为夏季和冬季, 春季最低。结合GPS (Global Position System)和GIS (Geographic Information System), 利用GIS的Kring插值法对洪泽湖大型水生植物总生物量及主要优势物种的时空分布进行了可视化模拟。结果发现洪泽湖现阶段大型水生植物分布区域主要集中在湖区北部水质较好、透明度较高且相对封闭的成子湖区。文章也分析了洪泽湖大型水生植物变迁的潜在影响因子, 为水生植物保护和生态系统健康提供了基础依据。  相似文献   

3.
During the flood season of 1992–1993, 139 species of fishes were collected from a floodplain lake system in the central Amazon Basin. Fish species distribution was examined relative to abiotic variables in seven vegetation strata on Marchantaria Island, Solimões River. Both environmental variables and species distributions were influenced by a river channel to floodplain-interior gradient. Species diversity was significantly higher in vegetated areas than in unvegetated areas, with deeper water Paspalum repens stands harbouring the highest diversity. As a result, species richness and catches were positively related to habitat complexity, while catch was also negatively related to dissolved oxygen (DO) and water depth. Low DO and shallow waters appeared to act as a refuge from predation. Fish assemblages were related to water chemistry, but species richness was not. Canonical correspondence analysis provided evidence that floodplain fish assemblages formed by the 76 most common species were influenced by physical variables, macrophyte coverage and habitat complexity, which jointly accounted for 67% of the variance of fish species assemblages. Omnivores showed no pattern relative to the river channel to floodplain-interior gradient while detritivores were more likely to be found at interior floodplain sites and piscivores closer to the river. Piscivores could be further separated into three groups, one with seven species associated with free-floating macrophytes in deep water, a second with five species found in shallow waters with rooted grasses and a third with six open water orientated species. The results suggest that fish assemblages in the Amazon floodplain are not random associations of species.  相似文献   

4.
5.
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.  相似文献   

6.
Over-abstraction of water places unsustainable pressures on river ecosystems, with the impacts amplified under drought conditions. Freshwater fishes are particularly vulnerable due to associated changes in water quality, and habitat availability, condition and connectivity. Accordingly, fish assemblages are ideal indicators of the impacts of drought and over-abstraction. The Murray-Darling Basin (MDB), south-eastern Australia, terminates at the Ramsar listed Coorong and Lower Lakes, which comprise Lake Alexandrina and Lake Albert. Over-abstraction and extreme drought during the last decade has placed these lakes under severe environmental stress. The purpose of this study was to investigate shifts in fish assemblages caused by substantial water level recession and salinization in the Lower Lakes. Small-bodied fish assemblages were sampled at the beginning and several years into the drought. Off-lake habitats held diverse fish assemblages in 2003, but most sites were dry by 2009. Remaining habitats were disconnected, salinities increased substantially, and aquatic vegetation shifted from freshwater to salt-tolerant species. There was a substantial decline in the proportion of specialist species, especially diadromous and threatened species, and an emerging dominance of generalist freshwater and estuarine species. The findings warn of the inevitable ecological impact of over-allocating water for human use in drought-prone regions, and highlight the need for adequate environmental water allocations. This study also emphasises that understanding the ecological attributes of a fish species, and the subsequent assignment to a functional group, will help predict vulnerability to decline and extirpation.  相似文献   

7.
Reef flats, typically a low‐relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave‐exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well‐adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea‐level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required.  相似文献   

8.
9.
During the 1950s, the submerged vegetation of shallow lakes in north‐eastern Germany was dominated by nutrient tolerant species, with Ceratophyllum demersum and Myriophyllum sp. being most common. Almost one third of 300 investigated lakes had already lost their submerged macrophytes at that time. Very shallow lakes showed either high or low macrophyte abundance. Increasing depth resulted in medium macrophyte abundances, which may contribute to the stabilisation of local or temporary clearwater states. Forty years later, the percentage of lakes without macrophytes had dramatically increased. Between 55 and 85% of the investigated lakes showed a low abundance. The decline was most pronounced in very shallow lakes. The majority of the investigated lakes showed summer TP concentrations below 100 μg L–1, but no colonisation by submerged macrophytes, which indicates a resilience against re‐colonisation.  相似文献   

10.
Some macrophytes are transported to the deep-sea bottom and are utilized by heterotrophs in the deep-sea as a food source. We inferred the transport route of macrophytes toward the deep-sea based on similarity in the species compositions of macrophyte pieces collected from the dysphotic bottom off the Izu Peninsula and the drifting macroalgae reported for the study area. We also examined whether or not the macrophytes are buried in the sediment, based on stable isotope distributions of organisms. Macrophytes collected by dredging at a depth of 100-300 m included 93 species, whereas 43 species were found by trawling at depths from 200 to 400 m. Only 15 of 76 dredged species (19.7%) that were identified to the species level were identical to the drifting macroalgal species reported for this area, whereas 15 of the 29 trawled species (51.7%) that were identified to the species level were identical to the reported drifting species. It was thus inferred that macrophytes were mainly transported through sliding along the sea bottom for the macrophytes collected by dredging and through sinking from the surface water for the macrophytes collected by trawling. The δ13C of sedimentary organic matter (SOM) from the 200-300 m zone was similar to the δ13C distribution of particulate organic matter in the surface water reported for the study area. The SOM in the zone likely originated from almost exclusively phytoplankton. In contrast, the 13C of SOM was significantly more enriched in shallow areas ≤100 m deep. We infer that not only phytoplankton but also macrophytes could supply organic matter to heterotrophs on the shallow bottom.  相似文献   

11.
1. The availability of complex habitats such as macrophytes may be vital in determining the outcomes of interactions between introduced predators and native prey. Introduced brown trout (Salmo trutta) have impacted numerous small native freshwater fishes in the southern hemisphere, but the potential role of complex habitats in determining the direct outcomes of brown trout – native fish interactions has not been experimentally evaluated. 2. An in‐lake enclosure experiment was used to evaluate the importance of structurally complex habitats in affecting the direct impacts of brown trout on a threatened galaxiid fish. Five Galaxias auratus and a single brown trout were added to enclosures containing one of three different habitat types (artificial macrophytes, rocks and bare silt substrate). The experiment also had control enclosures without brown trout. Habitat‐dependence of predation risk was assessed by analysis of G. auratus losses to predation, and stomach contents of remaining fish were analysed to determine if brown trout directly affect the feeding of G. auratus and whether this is also habitat‐dependent. 3. Predation risk of G. auratus differed significantly between habitat types, with the highest mortality in enclosures with only bare silt substrate and the lowest in enclosures containing artificial macrophytes. This result highlights the importance of availability of complex habitats for trout – native fish interactions and suggests that increasing habitat degradation and loss in fresh waters may exacerbate the direct impacts of introduced predators. 4. Stomach contents analyses were restricted to fish in enclosures with artificial macrophytes and rocks, as most fish were consumed in enclosures with brown trout and only bare silt substrate. These analyses suggest that brown trout do not directly affect the feeding of G. auratus in complex habitats, but it is still unknown whether its feeding is reduced if complex habitats are unavailable.  相似文献   

12.
1. Classification of European lake fish assemblages can be based on fish‐assemblage structure or morphological, geographical, physical and chemical lake attributes. However, substantial gaps in knowledge exist with respect to the correspondence between both classification approaches. 2. Here, we compiled fish assemblage data from 165 lakes situated in the European ‘Central Plains’ ecoregion. Cluster analysis of fish abundances was performed to compare fish assemblage types of the entire ecoregion with those from previous country‐specific studies. Nonparametric group comparisons, classification trees and partial canonical ordinations were used to infer the correspondence between fish assemblage types and morphology, geographical position and nutrient concentration of the lakes. 3. Three distinct fish assemblages were revealed: vendace (Coregonus albula), ruffe (Gymnocephalus cernuus) and roach (Rutilus rutilus) lake types. Both latitude and lake depth were the best determinants of lake type, but total phosphorus (TP) concentrations were also important. Vendace lakes were deep and had low TP concentrations, whereas the shallower ruffe and roach lakes had higher TP values. Roach lakes were more frequent in the north‐west area of the ecoregion, whereas ruffe lakes were more often found south of the Baltic Sea. 4. Controlling for the influence of nutrient concentration showed that lake morphology and geographical position were important determinants of fish assemblages. However, the variance explained was low (<20%), implying that biological interactions may also be important in forming the lake‐specific fish assemblages. 5. The results suggest that fish assemblages differ between deep and shallow lakes, and between the north‐west and south‐east locations within the Central Plains ecoregion. Accordingly, establishment of depth‐related lake morphotypes is needed, and the European ecoregions recommended to be used in evaluation systems according to the Water Framework Directive seem to be too coarse to reflect the subtle differences of fish species richness along geographical gradients.  相似文献   

13.
With anthropogenic impacts rapidly advancing into deeper waters, there is growing interest in establishing deep‐sea marine protected areas (MPAs) or reserves. Reserve design depends on estimates of connectivity and scales of dispersal for the taxa of interest. Deep‐sea taxa are hypothesized to disperse greater distances than shallow‐water taxa, which implies that reserves would need to be larger in size and networks could be more widely spaced; however, this paradigm has not been tested. We compiled population genetic studies of deep‐sea fauna and estimated dispersal distances for 51 studies using a method based on isolation‐by‐distance slopes. Estimates of dispersal distance ranged from 0.24 km to 2028 km with a geometric mean of 33.2 km and differed in relation to taxonomic and life‐history factors as well as several study parameters. Dispersal distances were generally greater for fishes than invertebrates with the Mollusca being the least dispersive sampled phylum. Species that are pelagic as adults were more dispersive than those with sessile or sedentary lifestyles. Benthic species from soft‐substrate habitats were generally less dispersive than species from hard substrate, demersal or pelagic habitats. As expected, species with pelagic and/or feeding (planktotrophic) larvae were more dispersive than other larval types. Many of these comparisons were confounded by taxonomic or other life‐history differences (e.g. fishes being more dispersive than invertebrates) making any simple interpretation difficult. Our results provide the first rough estimate of the range of dispersal distances in the deep sea and allow comparisons to shallow‐water assemblages. Overall, dispersal distances were greater for deeper taxa, although the differences were not large (0.3–0.6 orders of magnitude between means), and imbalanced sampling of shallow and deep taxa complicates any simple interpretation. Our analyses suggest the scales of dispersal and connectivity for reserve design in the deep sea might be comparable to or slightly larger than those in shallow water. Deep‐sea reserve design will need to consider the enormous variety of taxa, life histories, hydrodynamics, spatial configuration of habitats and patterns of species distributions. The many caveats of our analyses provide a strong impetus for substantial future efforts to assess connectivity of deep‐sea species from a variety of habitats, taxonomic groups and depth zones.  相似文献   

14.
15.
Morphotypes for 67 lakes in the German lowlands were derived, based on maximum depth and mixis type. A threshold of 11 m maximum depth was identified to be the best level to discriminate shallow from deep lake morphotypes. The fish communities in these two morphotypes were significantly different. Indicator species analyses based on fish biomasses found vendace Coregonus albula in deep lakes and ruffe Gymnocephalus cernuus , bream Abramis brama , white bream Abramis bjoerkna , roach Rutilus rutilus , pikeperch Sander lucioperca and small perch Perca fluviatilis in shallow lakes to be the most representative species of their communities. Lake productivity was closely related to biomass and in part abundance of the type‐indicator species, with vendace declining with increasing chlorophyll a concentration in the deep lakes, whereas biomass of pikeperch, bream, white bream and ruffe increased and biomass of small perch decreased with increasing chlorophyll a . These results indicate that assessment of ecological integrity of lakes by their fish fauna is generally possible, if lakes are initially separated according to a depth‐related morphotype before the assessment, and if eutrophication is considered to be the main anthropogenic degradation.  相似文献   

16.
17.
白洋淀是华北平原最大的浅水湖泊。近几十年来,白洋淀上游耗水增加,天然入淀水量急剧减少,使白洋淀水位明显降低;同时,随着淀泊周边农村生活污水的排入,白洋淀发生了严重的富营养化。2017年雄安新区设立,白洋淀环境治理工作的重要性空前提高。近几年通过上游水库和跨流域生态补水,白洋淀水位明显抬升,同时淀中和淀边农村实施了生活污水收集。为了解白洋淀当前水环境状况,对前期补水和治污的效果进行评估,2019年8月对白洋淀水体理化指标及水生生物进行调查,采用水质、浮游植物、浮游动物、底栖动物指标评价白洋淀水环境质量,并与2010年的调查数据进行对比,辅以沉水植物指标评价水体生态状况。结果表明: 白洋淀2019年总磷达到优于Ⅲ类水平,总氮优于Ⅱ类水平,水环境状况比2010年有较大改善。其中,总磷浓度下降了88.6%,总氮浓度下降了83.9%,叶绿素a浓度下降了47.8%,透明度增大了43.4%;浮游动物、底栖动物等生物多样性明显提高,浮游植物密度显著降低,优势种从普遍的重富营养型转变为富营养型;沉水植物清洁型种类分布范围缩小。这说明沉水植物物种评价法不适于白洋淀水环境质量评价,浮游动物多样性评价方法也不适用于当前白洋淀水环境质量评价。早期,由于污染源集中在西部,白洋淀西部水质差于东部;现在,由于自西、北、南多方向补水,淀区的水动力条件发生显著改变,加之西部实施治污工程,淀区水质呈现空间均一化的特点。  相似文献   

18.
1. Most studies on zooplankton responses to acidification have focused on clearwater lakes with a dramatic acidification history. The role of dissolved organic carbon (DOC) in moderating zooplankton responses to acidification in naturally acidic, dystrophic lakes is less well understood and is partially impeded by a lack of baseline data. 2. Cladocera leave identifiable remains preserved in lake sediments that can be used to provide information on pre‐industrial species assemblages and their responses to environmental stressors such as acidification. Therefore, we used palaeolimnological approaches to track cladoceran assemblage responses to acidification since c.1850 (inferred from sedimentary diatom assemblages) in three acidified lakes in Kejimkujik National Park (Nova Scotia, Canada) that differ markedly in DOC content. These include two highly dystrophic lakes (Kejimkujik and Pebbleogittch lakes), and one clearwater lake (Beaverskin Lake). 3. In dystrophic Pebbleogittch Lake, an increase in the acid‐tolerant, jelly‐clad, pelagic taxon Holopedium glacialis occurred coincident with diatom‐inferred pH (DI‐pH) declines, but no other notable cladoceran assemblage shifts occurred. Similarly, Cladocera assemblages did not appear to respond to lakewater acidification in dystrophic Kejimkujik Lake. 4. In contrast, in the clearwater Beaverskin Lake, several observed shifts in cladoceran assemblage corresponded to DI‐pH declines, including an increase in the proportion of littoral taxa and an increase in Hill’s N2 species diversity. This may indicate increased water clarity as a result of acidification‐related decreases in DOC, which may have enhanced growth of emergent aquatic macrophytes and improved visibility for planktivorous fish, leading to increased predation on pelagic taxa. Species shifts within the littoral assemblage of Beaverskin Lake may reflect the differing tolerances of littoral taxa to low pH and aluminium toxicity. 5. Overall, our results suggest that cladoceran assemblages in naturally acidic, dystrophic lakes may be resilient against additional pH declines related to industrial emissions of acidifying agents, as dystrophic lakes are less vulnerable to increased aluminium toxicity and acidification‐induced increases in water clarity and often have a pre‐industrial cladoceran assemblage already adapted to acidic conditions.  相似文献   

19.

Aim

In marine ecosystems, habitat‐forming species (HFS) such as reef‐building corals and canopy‐forming macroalgae alter local environmental conditions and can promote biodiversity by providing biogenic living space for a vast array of associated organisms. We examined community‐level impacts of observed climate‐driven shifts in the relative abundances of two superficially similar HFS, the warm‐water kelp Laminaria ochroleuca and the cool‐water kelp Laminaria hyperborea.

Location

Western English Channel, north‐east Atlantic

Methods

We compared algal and invertebrate assemblages associated with kelp stipes and holdfasts, across multiple sites and sampling events. Significant differences were recorded in the structure of assemblages between the host kelp species at each site and event.

Results

Assemblages associated with stipes of the cool‐water HFS were, on average, >12 times more diverse and supported >3600 times more biomass compared with the warm‐water HFS. Holdfast assemblages also differed significantly between species, although to a lesser extent than those associated with stipes. Overall, assemblages associated with the warm‐water HFS were markedly impoverished and comprised far fewer rare or unique taxa.

Main conclusions

While previous research has shown how climate‐driven loss of HFS can cause biodiversity loss, our study demonstrates that climate‐driven substitutions of HFS can also lead to impoverished assemblages. The indirect effects of climate change remain poorly resolved, but shifts in the distributions and abundances of HFS may invoke widespread ecological change, especially in marine ecosystems where facilitative interactions are particularly strong.  相似文献   

20.
研究以湖北枝江金湖(由东湖和刘家湖组成)为例,综合水下光照条件和沉水植物种子库分析,探讨沉水植物可恢复区的判别方法。研究分别于2018年6月和12月对金湖开展了综合调查,并在6月开展了种子库调查。结果表明,金湖富营养化问题较严重, 6月各位点水深-透明度比值均低于沉水植物生长的阈值需求,范围为0.13—0.25,平均为0.17; 12月部分位点的水深-透明度比值达到了沉水植物生长的阈值需求,范围为0.18—0.95,平均为0.44。各位点沉水植物种子库密度范围为0—200 ind./m2,平均为24 ind./m2。根据金湖的水下光照条件和沉水植物种子库分布情况,结合湖底地形,建议在冬春季透明度较高的时期降低水位,进行沉水植物恢复工作。通过水下地形、光照条件和种子库的综合分析,对金湖的沉水植物恢复区进行了划分,结果显示东湖的东南部、东湖的西岸、刘家湖的西部和东岸作为沉水植物恢复区较为合适。该研究有望为湖泊沉水植物的恢复提供定量化的参考建议,提高生态修复工程效果和降低管理成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号